Lacustrine shale gas represents a promising frontier in the future development of shale gas resources. However, research on the characterization of lacustrine shale gas produced water (SGPW) remains scarce. In this study, we characterized the geochemical properties of both marine and lacustrine SGPW (MSGPW and LSGPW) and assessed their dissolved organic matter (DOM) components using fluorescence EEM spectroscopy.
View Article and Find Full Text PDFProtozoan ciliates represent a common biological contaminant during microalgae cultivation, which will lead to a decline in microalgae productivity. This study investigated the effectiveness of sodium dodecyl benzene sulfonate (SDBS) in controlling ciliate populations within microalgae cultures. SDBS concentrations of 160 mg/L and 100 mg/L were found to effectively manage the representative species of ciliates contamination by Euplotes vannus and Uronema marinum during the cultivation of Synechococcus and Chlorella, and the growth vitality of microalgae has been restored.
View Article and Find Full Text PDFElectrochemical advanced oxidation processes (EAOPs) have shown great potential for the treatment of shale gas produced water (SGPW). In this study, we investigated the transformation of dissolved organic matter (DOM) during EAOPs of SGPW and the formation of toxic halogenated by-products at various current densities, using fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry. We found that the priority of DOM removal was terrestrial humic-like > microbial humic-like > protein-like substances.
View Article and Find Full Text PDFProduced water (PW) is the largest waste stream generated by hydraulic fracturing in an unconventional shale gas reservoir. Oxidation processes (OPs) are frequently used as advanced treatment method in highly complicated water matrix treatments. However, the degradation efficiency is the main focus of research, organic compounds and their toxicity have not been properly explored.
View Article and Find Full Text PDFThe vegetation deterioration and pollution expansion from non-ferrous metal tailings pond have been found in many countries leading to water soil erosion and human health risk. Conventional ecological remediation technologies of mine tailings such as capping were costly and elusive. This study provided an economic and effective model as an alternative by substrate amelioration and vegetation restoration.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2022
The waste product phosphogypsum (PG) is produced in phosphoric acid production processes. Its storage requires large amounts of land resources and poses serious environmental risks. In this work, detailed experimental research was carried out to investigate the potential reuse of PG after calcination modification as a novel building material for cast-in-place concrete products.
View Article and Find Full Text PDFThe unique ability of Anammox bacteria to metabolize short-chain fatty acids have been demonstrated. However, the potential contributions of active Anammox species to carbon utilization in a mixotrophic Anammox-denitrification process are less well understood. In this study, we combined genome-resolved metagenomics and DNA stable isotope probing (DNA-SIP) to characterize an Anammox process fed with acetate under COD/TN ratios of around 0.
View Article and Find Full Text PDFShale gas-produced water (PW), the waste fluid generated during gas production, contains a large number of organic contaminants and high salinity matrix. Previous studies generally focused on the end-of-pipe treatment of the PW and ignored the early collection process. In this study, the transformation of the molecular composition and microbial community structure of the PW in the transportation and storage process (i.
View Article and Find Full Text PDFObligate aerobic methanotrophs have been proven to oxidize methane and participate in denitrification under hypoxic conditions. However, this phenomenon and its metabolic mechanism have not been investigated in detail in aerobic methane oxidation coupled to denitrification (AME-D) process. In this study, a type of hypoxic AME-D consortium was enriched and operated for a long time in a CH-cycling bioreactor with strict anaerobic control and the nitrite removal rate reached approximately 50 mg N/L/d.
View Article and Find Full Text PDFTannery sludge usually has high content of trivalent chromium (Cr(III)) and ammonium-nitrogen (NH-N). It is important to make a critical evaluation of the releasing behaviors of Cr(III) and NH-N from tannery sludge before its use on improving soil fertility in agricultural applications. For this purpose, static batch and dynamic leaching experiments with different mathematical models were carried out to simulate the Cr(III) and NH-N releasing kinetics from tannery sludge sampled in a typical tannery disposal site in North China, and their influencing factors were also discussed.
View Article and Find Full Text PDFResponses of a microbial community in the completely autotrophic nitrogen removal over nitrite (CANON) process, which was shocked by a pH of 11.0 for 12 h, were investigated. During the recovery phase, the performance, anaerobic ammonia oxidation (anammox) activity, microbial community, and correlation of bacteria as well as the influencing factors were evaluated synchronously.
View Article and Find Full Text PDFMicrobiologyopen
April 2020
Due to the large area of agricultural soils contaminated by Cd worldwide, cost-effective and practical method for safety food production are necessary. The roles of micronutrient on reducing Cd accumulation in crops are recently introduced. In the current study, a pot-culture experiment in the greenhouse was conducted to study the foliar spraying of Se (NaSeO) and Zn (ZnSO) on physiological and growth parameters, as well as Cd concentrations in wheat plants grown in Cd-contaminated soil.
View Article and Find Full Text PDFAnaerobic ammonium oxidation (anammox) pathway is sensitive to organic matter, and its recovery requires reliable evidence regarding the dominance of anammox in N-removal. This study showed that the anammox process deteriorated, with N-removal efficiencies rapidly decreasing from 87.2 to 45.
View Article and Find Full Text PDFA spontaneous development of full-scale anaerobic ammonium oxidation (anammox) process was seldom reported, and its operational parameters could supply references in actual applications. This engineered case indicated that anammox process was suitable for treating relatively high-strength ammonium and organics wastewater due to niche differentiation of biofilm. Results of isotope labelling showed that anammox contributed approximately 40% to N-loss in aerobic unit, but this value increased to 78.
View Article and Find Full Text PDFJ Environ Sci (China)
August 2018
Struvite crystallization has been considered a promising approach to recover phosphorus from wastewater. However, its practical application is limited, probably because of the high cost of magnesium (Mg). In this study, a comprehensive economic analysis was conducted using five Mg sources (MgCl, MgSO, MgO, Mg(OH), and bittern) during the operation of a pilot-scale fluidized bed reactor (FBR), using swine wastewater as the case matrix.
View Article and Find Full Text PDFTwo newly isolated aerobic denitrifying bacterial strains ( sp. GA and sp. GP) were co-cultured to investigate the synergy of carbon and nitrogen removal of different functional bacteria.
View Article and Find Full Text PDFFree nitrous acid (FNA) is a promising chemical reagent for excess sludge reduction. The distinctive properties of FNA treatment on waste activated sludge (WAS) disposal have previously been demonstrated, however, the cellular response, permeabilization, and disruption caused by low-concentration FNA and the direct cell solubilization of WAS using concentrated FNA should be better understood. In this study, the parameters that influence the sludge solubilization efficiency were optimized over a wide range of FNA concentrations.
View Article and Find Full Text PDF