Publications by authors named "Zhang Yukui"

Organic-inorganic hybrid perovskites have demonstrated great potential for flexible optoelectronic devices due to their superior optoelectronic properties and structural flexibility. However, mechanical deformation-induced cracks at the buried interface and delamination from the substrate severely constrain the optoelectronic performance and device lifespan. Here, we design a two-site bonding strategy aiming to reinforce the mechanical stability of the SnO2/perovskite interface and perovskite layer using a multifunctional organic salt, 4-(trifluoromethoxy)phenylhydrazine hydrochloride (TPH).

View Article and Find Full Text PDF

Small ubiquitin-like modifier (SUMO) plays a pivotal role in diverse cellular processes and is implicated in diseases such as cancer and neurodegenerative disorders. However, large-scale identification of endogenous SUMO-1 faces challenges due to limited enrichment methods and its lower abundance compared to SUMO-2/3. Here we propose a novel combinatorial peptide strategy, combined with anti-adhesive polymer development, to enrich endogenous SUMO-1 modified peptides, revealing a comprehensive SUMOylation landscape.

View Article and Find Full Text PDF

Background: The metal organic cages (MOCs) are an emerging type of porous material that has attracted considerable research interest due to their unique properties, including good stability and well-defined intrinsic cavities. The chiral MOCs with porous structures have broad application prospects in enantiomeric recognition and separation. However, there are almost no relevant reports on chiral MOCs as chiral stationary phases (CSPs) for enantioseparation by high-performance liquid chromatography (HPLC).

View Article and Find Full Text PDF

A chiral porous organic polymer (cPOP) was synthesized through nucleophilic substitution polymerization between dichloromaleimide and aromatic amine. This cPOP was used as a new chiral stationary phase (CSP) for gas chromatography (GC) chiral separation. In this work, we first used this cPOP as the CSP for gas chromatography to investigate its ability to separate racemic mixtures, including amino acid derivatives, chiral alcohols, aldehydes, alkanes, ketones, esters, and organic acids.

View Article and Find Full Text PDF

Glycolysis provides tumors with abundant nutrients through glucose (Glu) metabolism. As a therapeutic target, precise targeting and effective inhibition of the glycolysis process remains a major challenge in anti-metabolic therapy. In this study, a novel dual-template molecularly imprinted polymer (D-MIP), capable of specifically recognizing glucose transporter member 1 (GLUT1) and hexokinase-2 (HK2) was prepared for anti-glycolytic tumor therapy.

View Article and Find Full Text PDF

Understanding protein structure is essential for elucidating its function. Cross-linking mass spectrometry (XL-MS) has been widely recognized as a powerful tool for analyzing protein complex structures. However, the effect of cross-linker backbone structure on protein dynamic conformation analysis remains less understood.

View Article and Find Full Text PDF

Living cell systems possess multiple isolated compartments that can spatially confine complex substances and shield them from each other to allow for feedback reactions. In this work, a bioinspired design of metal-organic frameworks (MOFs) with well-defined multishelled matrices was fabricated as a hierarchical host for multiple guest substances including fluorogenic molecules and catalytic nanoparticles (NPs) at the separated locations for the development of a dual-mode glycoprotein assay. The multispatial-compartmental zeolitic imidazolate framework-8 (ZIF-8) constituents were synthesized via epitaxial shell-by-shell overgrowth to guide the integration and spatial organization of host guests.

View Article and Find Full Text PDF

The human body contains trillions of cells, classified into specific cell types, with diverse morphologies and functions. In addition, cells of the same type can assume different states within an individual's body during their lifetime. Understanding the complexities of the proteome in the context of a human organism and its many potential states is a necessary requirement to understanding human biology, but these complexities can neither be predicted from the genome, nor have they been systematically measurable with available technologies.

View Article and Find Full Text PDF
Article Synopsis
  • - Poly(ADP-ribose) polymerase inhibitors (PARPi), like olaparib, are effective in cancer treatment but not all tumors, including those with BRCA1/2 mutations, respond well to them.
  • - NADP+ has been identified as a natural inhibitor that could enhance the effectiveness of PARPi, but its clinical use is limited due to its inability to effectively enter cells.
  • - This study introduces nanoparticles that release NADP+ in tumor cells, increasing its concentration and working together with olaparib to significantly inhibit tumor growth, suggesting a new approach for cancer therapy.
View Article and Find Full Text PDF

In this work, the covalent organic frameworks-incorporated electrospun nanofiber membranes were used as a highly efficient adsorbent to enrich quinolone antibiotics in food samples. Covalent organic frameworks composed of 1,3,5-tris(4-aminophenyl) benzene and 2,5-dihydroxyterephthalaldehyde were rapid prepared only 20 min at room temperature, then were further synthesized into electrospun polyacrylonitrile nanofiber membranes by electrospinning the binary precursors solution directly. Coupled with high-performance liquid chromatography with ultraviolet detector, the method exhibited good linearity in the range of 1-100 ng·mL for four quinolone antibiotics, with low limits of detection 0.

View Article and Find Full Text PDF

Recent advances in single-cell proteomics enable the direct profiling of thousands of proteins from a single mammalian cell. However, due to the bottlenecks in detecting low-abundance secreted proteins and extracellular vesicle (EV) proteins (collectively referred to as the secretome) against a background of high-abundance proteins in serum-containing culture medium, the comprehensive investigation of the secretome at the single-cell level using nanoLC-MS/MS still remains challenging. Herein, we report a novel single-cell secretome profiling (SCSP) method by integrating the metabolic labeling of newly synthesized proteins, click chemistry-based enrichment, and in situ digestion of the labeled secretome in an alkyne-functionalized capillary micro-reactor, followed by nanoLC-MS/MS analysis.

View Article and Find Full Text PDF
Article Synopsis
  • - The study introduces
  • TAggiXL
  • , a new method that improves the isolation and analysis of protein aggregates in live cells by combining fluorescence tracking with cross-linking proteomics.
  • - This technique enables unbiased profiling of the aggregated proteome and its interactions, revealing important components like
  • E3 ubiquitin ligase TRIM26
  • and the interaction hub
  • HSPA1B
  • , which are crucial for understanding protein aggregation.
  • - TAggiXL provides insights into protein aggregation mechanisms, especially under stress conditions, and may lead to better strategies for treating degenerative diseases linked to protein aggregation.
View Article and Find Full Text PDF

Major depressive disorder (MDD) is a severe psychiatric disorder that currently lacks any objective diagnostic markers. Here, we develop a deep learning approach to discover the mass spectrometric features that can discriminate MDD patients from health controls. Using plasma peptides, the neural network, termed as CMS-Net, can perform diagnosis and prediction with an accuracy of 0.

View Article and Find Full Text PDF

Photocatalytic proximity labeling has shown great promise for mapping the spatiotemporal dynamics of surfaceome. Although cell-surface targeting photosensitizers relying on antibodies, lipid molecules, and metabolic labeling have gained effects, the development of simpler and stable methods that avoid complex chemical synthesis and biosynthesis steps is still a huge challenge. Here, the study has introduced 2D nanomaterials with the ability of cell surface engineering to perform the in situ anchoring of photosensitizer on living cell surface.

View Article and Find Full Text PDF

The study of in situ conformations and interactions of mitochondrial proteins plays a crucial role in understanding their biological functions. Current chemical cross-linking mass spectrometry (CX-MS) has difficulty in achieving in-depth analysis of mitochondrial proteins for cells without genetic modification. Herein, this work develops the reactive oxygen species (ROS)-responsive cross-linker delivery nanoparticles (R-CDNP) targeting mitochondria.

View Article and Find Full Text PDF

Nitrite (NO) is widely present in the natural environment and human daily life. Excessive NO can cause harm to the environment and human health. Herein, silicon nanoparticles (SiNPs) with a fluorescence quantum yield of up to 70 % were synthesised using a one-pot hydrothermal method and combined with the common and inexpensive o-phenylenediamine (OPD) to achieve the detection of NO.

View Article and Find Full Text PDF

Urban green space (UGS) provides multiple ecosystem services to enhance the residents' well-being in the cities. As a characterization of differences in the degree of interaction between residents and UGS, Green exposure equity, has been recognized as an environmental justice issue. In this study, we propose the concept of urban green space' vitalization (UGV) as a primary criterion for assessing whether the UGS' functions or services are realized.

View Article and Find Full Text PDF
Article Synopsis
  • SPACX is an innovative method for studying protein structures and interactions in living cells by using chemical cross-linking and subcellular isolation to analyze protein complexes in their natural state.
  • The technique was employed to investigate the conformation and interactions of the PTEN protein, revealing significant differences in its behavior between the nucleus and cytoplasm, as well as a variety of unique interacting partners in each location.
  • SPACX's ability to highlight protein behavior under stress conditions showcases its potential to deepen our understanding of proteins' functional diversity in different cellular environments.
View Article and Find Full Text PDF

Intestinal microecology (IM) is the largest and most important microecological system of the human body. Furthermore, it is the key factor for activating and maintaining the physiological functions of the intestine. Numerous studies have investigated the effects of the gut microbiota on the different tissues and organs of the human body as well as their association with various diseases, and the findings are gradually being translated into clinical practice.

View Article and Find Full Text PDF

Small extracellular vesicles (sEVs) are proven to hold great promise for diverse therapeutic and diagnostic applications. However, batch preparation of sEVs with high purity and bioactivity is a prerequisite for their clinical translations. Herein, we present an electric field assisted tangential flow filtration system (E-TFF), which integrates size-based filtration with electrophoretic migration-based separation to synergistically achieve the isolation of high-quality sEVs from cell culture medium.

View Article and Find Full Text PDF

The increasing attention towards environmental quality, food safety, public security and medical diagnosis demands high requirements and standards for chemical sensors with merits of rapid response, high precision, long-term stability and reusability. In this case, a prominent innovation in sensory materials holds potential to realize new generations of chemical sensor technologies. Specifically, photonic crystals (PCs) as structured dielectric materials with spatially periodic ordered arrangements offer unique advantages in improving the sensing performance of chemical sensors.

View Article and Find Full Text PDF

Glycinamide ribonucleotide formyltransferase (GARFT) is an important enzyme in the folate metabolism pathway, and chemical drugs targeting GARFT have been used in tumor treatments over the past few decades. The development of novel antimetabolism drugs that target GARFT with improved performance and superior activity remains an attractive strategy. Herein, we proposed a targeted double-template molecularly imprinted polymer (MIP) for enhancing macrophage phagocytosis and synergistic antimetabolic therapy.

View Article and Find Full Text PDF

Marine microbes drive pivotal transformations in planetary-scale elemental cycles and have crucial impacts on global biogeochemical processes. Metaproteomics is a powerful tool for assessing the metabolic diversity and function of marine microbes. However, hundreds of liters of seawater are required for normal metaproteomic analysis due to the sparsity of microbial populations in seawater, which poses a substantial challenge to the widespread application of marine metaproteomics, particularly for deep seawater.

View Article and Find Full Text PDF

Protein phosphorylation is one of the most common and important post-translational modifications that regulates almost all life processes. In particular, protein phosphorylation regulates the development of major diseases such as tumors, neurodegenerative diseases, and diabetes. For example, excessive phosphorylation of Tau protein can cause neurofibrillary tangles, leading to Alzheimer's disease.

View Article and Find Full Text PDF