Non-small cell lung cancer (NSCLC) is a prevalent form of lung cancer, primarily including adenocarcinomas and squamous cell carcinomas. Advances in targeted therapies have significantly improved NSCLC treatment. In this study, we developed a multifunctional fluorescent imaging nanodrug delivery system using fructose as a natural cross-linker due to its biocompatibility and low toxicity.
View Article and Find Full Text PDFLactate metabolism (LM) plays a crucial role in tumor progression and therapy resistance in non-small cell lung cancer (NSCLC). Several methods had been developed for NSCLC prognosis prediction based on lactate metabolism-related information. The existing methods for the construction of prognosis prediction models are mostly based on single models such as linear models, SVM, and decision trees.
View Article and Find Full Text PDFBackground: The aim of this study was to evaluate the short-term efficacy and safety of camrelizumab in combination with apatinib in the treatment of refractory or metastatic esophageal squamous cell carcinoma (ESCC).
Methods: We retrospectively reviewed the medical records of 30 patients with refractory or metastatic ESCC treated with camrelizumab in combination with apatinib at a single institution. The short-term efficacy was evaluated according to the Response Evaluation Criteria in Solid Tumors criteria.
Immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment but remains effective in only a subset of patients. Emerging evidence suggests that the gut microbiome and its metabolites critically influence ICB efficacy. In this study, we performed a multi-omics analysis of fecal microbiomes and metabolomes from 165 patients undergoing anti-programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) therapy, identifying microbial and metabolic entities associated with treatment response.
View Article and Find Full Text PDFMalaria, a devastating parasitic infection, is the leading cause of death in many developing countries. Unfortunately, the most deadliest causative agent of malaria, , has developed resistance to nearly all currently available antimalarial drugs. The Niemann-Pick type C1-related (PfNCR1) transporter has been identified as a druggable target, but its structure and detailed molecular mechanism are not yet available.
View Article and Find Full Text PDFThe potential health impacts of moderate alcohol consumption have long been debated. The COVID-19 pandemic has heightened public awareness of health concerns, creating a clear market opportunity for low-alcohol craft beer development. This study investigated the possibility of low-alcohol craft beer by co-fermentation with different ratios of () and (SC) according to the established quality indexes.
View Article and Find Full Text PDFMechanical strain and electric field affect the performance of conductive polymer devices, for which the underlying mechanism should be investigated at the molecular level. This study combines theoretical and experimental Raman approaches to explore the changes in the molecular structure of poly(3-hexylthiophene) (P3HT) and poly(3,4-ethylenedioxythiophene) (PEDOT) under the influence of mechanical strain and external electric fields. Theoretical calculations reveal the pronounced shifts in the main Raman peak if the conjugating length is changed by the mechanical strain, while in experiments, the peak position is unaffected under tensile and bending strain.
View Article and Find Full Text PDFBackground: As one of the world's most important vegetable crops, eggplant production is often severely affected by verticillium wilt, leading to significant declines in yield and quality. Traditional multispectral disease-imaging equipment is expensive and complicated to operate. Low-cost multispectral devices cannot capture images and cover less information.
View Article and Find Full Text PDFSqueezed spin states and squeezed light are both key resources for quantum metrology and quantum information science, but have been separately investigated in experiments so far. Simultaneous generation of these two types of quantum states in one experiment setup is intriguing but remains a challenging goal. Here, we propose a novel protocol based on judiciously engineered symmetric atom-light interaction, and report proof-of-principle experimental results of concurrent spin squeezing of 0.
View Article and Find Full Text PDFMonoatomic-layered carbon materials, such as graphene and amorphous monolayer carbon, have stimulated intense fundamental and applied research owing to their unprecedented physical properties and a wide range of promising applications. So far, such materials have mainly been produced by chemical vapour deposition, which typically requires stringent reaction conditions compared to solution-phase synthesis. Herein, we demonstrate the solution preparation of free-standing nitrogen-doped amorphous monolayer carbon with mixed five-, six- and seven-membered (5-6-7-membered) rings through the polymerization of pyrrole within the confined interlayer cavity of a removable layered-double-hydroxide template.
View Article and Find Full Text PDFPhotothermal therapy (PTT) provides a great prospect for noninvasive cancer therapy. However, it is still highly challenging to construct photothermal agents (PTAs) with the desired performances for imaging-guided PTT applications. Herein, a D-A-D-type naphthalene diamine (NDI)-based photothermal nano-PTAs NDS-BPN NP with near-infrared region (NIR) emission at 822 nm, aggregation-induced emission (AIE), high photothermal conversion efficiency (55.
View Article and Find Full Text PDFA high Fe content easily produces Fe-rich phases with a harmful morphology, resulting in a huge detrimental effect on the properties and recycling ability of Al-Si alloys. Therefore, finding ways to effectively transform Fe-rich phases to form a beneficial phase or shape is of great significance. Accordingly, Al-Si-based alloys with Fe contents ranging from 0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2024
Self-healing covalent adaptable networks (CANs) are not only of fundamental interest but also of practical importance for achieving carbon neutrality and sustainable development. However, there is a trade-off between the mobility and cross-linking structure of CANs, making it challenging to develop CANs with excellent mechanical properties and high self-healing efficiency. Here, we report the utilization of a highly dynamic four-arm cross-linking unit with an internally catalyzed oxime-urethane group to obtain CAN-based ionogel with both high self-healing efficiency (>92.
View Article and Find Full Text PDFTo investigate the synergistic effect of IAA and melatonin (MT) on three plants to alleviate the effects of salt damage on plants, we aim to determine the optimal concentrations of exogenous hormone treatments that improve salinity resistance for each species. In this experiment, three desert plants, , , and , which are common in Wuhai City, were used as plant materials. Two time periods (12 h,24 h) of exogenous hormone IAA (100 μmol/L) and exogenous melatonin concentration (0, 100, 200, 300 μmol/L) were used to treat the three desert plants in saline soil under different conditions of exogenous IAA and exogenous melatonin.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2024
The formation of an asymmetric junction is key to graphene-based photodetectors of high-sensitive photodetectability, because such a junction can not only facilitate the diffusion or drift of photogenerated carriers but also realize a self-powered operation. Here, a monolayer-multilayer graphene junction photodetector is accomplished by selectively thinning part of a multilayer graphene to a high-quality monolayer. Benefiting from the large photoabsorption cross section of multilayer graphene and strong asymmetry caused by the significant differences in optoelectronic properties between monolayer and multilayer graphene, the monolayer-multilayer graphene junction shows a 7-fold increase in short-circuit photocurrent as compared with that at the monolayer graphene-metal contact in scanning photocurrent images.
View Article and Find Full Text PDFNanomaterials (Basel)
May 2024
At present, heavy-metal-free quantum dot light-emitting diodes (QLEDs) have shown great potential as a research hotspot in the field of optoelectronic devices. This article reviews the research on heavy-metal-free quantum dot (QD) materials and light-emitting diode (LED) devices. In the first section, we discussed the hazards of heavy-metal-containing quantum dots (QDs), such as environmental pollution and human health risks.
View Article and Find Full Text PDFGels show great promise for applications in wearable electronics, biomedical devices, and energy storage systems due to their exceptional stretchability and adjustable electrical conductivity. However, the challenge lies in integrating multiple functions like elasticity, instantaneous self-healing, and a wide operating temperature range into a single gel. To address this issue, a hybrid hydrogen bonding strategy to construct gel with these desirable properties is proposed.
View Article and Find Full Text PDFImmunotherapy has revolutionized cancer treatment, but inconsistent responses persist. Our study delves into the intriguing phenomenon of enhanced immunotherapy sensitivity in older individuals with cancers. Through a meta-analysis encompassing 25 small-to-mid-sized trials of immune checkpoint blockade (ICB), we demonstrate that older individuals exhibit heightened responsiveness to ICB therapy.
View Article and Find Full Text PDFSjögren's syndrome (SjS) is a systemic, highly diverse, and chronic autoimmune disease with a significant global prevalence. It is a complex condition that requires careful management and monitoring. Recent research indicates that epigenetic mechanisms contribute to the pathophysiology of SjS by modulating gene expression and genome stability.
View Article and Find Full Text PDFLiquid-liquid phase separation (LLPS) in biology describes a process by which proteins form membraneless condensates within a cellular compartment when conditions are met, including the concentration and posttranslational modifications of the protein components, the condition of the aqueous solution (pH, ionic strength, pressure, and temperature), and the existence of assisting factors (such as RNAs or other proteins). In these supramolecular liquid droplet-like inclusion bodies, molecules are held together through weak intermolecular and/or intramolecular interactions. With the aid of LLPS, cells can assemble functional sub-units within a given cellular compartment by enriching or excluding specific factors, modulating cellular function, and rapidly responding to environmental or physiological cues.
View Article and Find Full Text PDFBackground: The impact of the gut microbiome on the initiation and intensity of immune-related adverse events (irAEs) prompted by immune checkpoint inhibitors (ICIs) is widely acknowledged. Nevertheless, there is inconsistency in the gut microbial associations with irAEs reported across various studies.
Methods: We performed a comprehensive analysis leveraging a dataset that included published microbiome data (n = 317) and in-house generated data from 16S rRNA and shotgun metagenome samples of irAEs (n = 115).