Publications by authors named "Zhang Ting Huang"

Monthly phytolith-occluded organic carbon (PhytOC) content in living leaves and litterfall of Moso bamboo (Phyllostachys edulis) were measured for a year. The PhytOC sequestration rate in living leaves of different months were compared with that in annual litterfall to determine the optimum sampling time of living leaves for estimating PhytOC sequestration rate of Moso bamboo. The contents of phytoliths and PhytOC in living leaves of Moso bamboos were 23.

View Article and Find Full Text PDF

Samples of fresh leaves and leaf litter, as well as soils taken from 0-10 and 10-30 cm layers, were collected in four types of typical forest ecosystems both in subtropical (Phyllostachys pubescens, Pinus massoniana, Cycloba lanopsisglauca, and Cunninghamia lanceolata stands) and in tropical climates (Vatica mangachapoi, Musa basjoo, Heveabrasiliensis, and Acacia mangium stands) for measurement of PhytOC (phytolith-occluded organic carbon) contents. The phytoliths in both leaves and soil samples were extracted by a microwave digestion method and their PhytOC contents were determined by alkali dissolution-spectrophotometry method. It was found that, among the four types of subtropical forests, the PhytOC contents of leaves, litter and 0-10 cm soil layer were the highest in P.

View Article and Find Full Text PDF

Carbon (C) occluded in phytolith (PhytOC) is a stable form of C; when PhytOC is returned to the soil through litterfall it is stored in the soil which can be an effective way for long-term C sequestration. However, few estimates on the rate of PhytOC input to the soil are available. To better understand the seasonal dynamics of PhytOC production and the annual rate of stable C sequestration through PhytOC input, we quantified the monthly litterfall, phytolith and PhytOC return to the soil over a year in a typical Lei bamboo (Phyllostachys praecox) forest in subtropical China.

View Article and Find Full Text PDF

Carbon (C) occluded in phytolith (PhytOC) is highly stable at millennium scale and its accumulation in soils can help increase long-term C sequestration. Here, we report that soil PhytOC storage significantly increased with increasing duration under intensive management (mulching and fertilization) in Lei bamboo (Phyllostachys praecox) plantations. The PhytOC storage in 0-40 cm soil layer in bamboo plantations increased by 217 Mg C ha(-1), 20 years after being converted from paddy fields.

View Article and Find Full Text PDF

The samples of different age (1-4 years old) Phyllostachys praecox plants and their organs (leaf, branch, and culm) were collected from their main production area in Lin' an County, Zhejiang Province of East China to study the contents and the uptake and accumulation characteristics of silicon and other nutritional elements, as well as the interrelations between Si and other nutrient elements. In the P. praecox plants, the C content in aboveground part was in the order of culm > branch> leaf, whereas the Si, N, P, K, Ca, Mg, Al, Fe and Mn contents were in the order of leaf > branch > culm.

View Article and Find Full Text PDF