Thioredoxin-interacting protein (TXNIP), as a pivotal protein in the cellular stress response, plays a significant role in the progression of diabetic nephropathy (DN). Consequently, therapeutic strategies aimed at targeting TXNIP may offer novel interventions for patients with DN. Our study is to explore the therapeutic potential of targeting TXNIP in mitigating renal tubular injury induced by hyperglycemia.
View Article and Find Full Text PDFThe study of force sensitivity based on a cavity optomechanical system plays a prominent role in quantum precision measurement and provides an ideal platform for precision sensing technology. Here, we propose a scheme to enhance the force sensitivity of a dissipatively coupled optomechanical system by inducing Duffing nonlinearity. The numerical analysis shows that inducing Duffing nonlinearity significantly improves the force sensitivity compared to the system without Duffing nonlinearity, even surpassing the standard quantum limit (SQL) by more than five orders of magnitude.
View Article and Find Full Text PDFWe propose a scheme to enhance optomechanical cooling via synthetic magnetism and frequency modulation (FM) in a three-mode loop-coupled optomechanical system. By introducing synthetic magnetism, the dark-mode effect can be broken, ensuring the simultaneous cooling of the two mechanical resonators. We find that the cooling of the two mechanical resonators is destroyed in the dark-mode-unbreaking (DMU) regime but can be achieved in the dark-mode-breaking (DMB) regime.
View Article and Find Full Text PDFBased on the generative adversarial network (GAN), we present a multifunctional X-ray tomographic protocol for artifact correction, noise suppression, and super-resolution of reconstruction. The protocol mainly consists of a data preprocessing module and multifunctional GAN-based loss function simultaneously dealing with ring artifacts and super-resolution. The experimental protocol removes ring artifacts and improves the contrast-to-noise ratio (CNR) and spatial resolution (SR) of reconstructed images successfully, which shows the capability to adaptively rectify ring artifacts with varying intensities and types while achieving super-resolution.
View Article and Find Full Text PDFWe propose a scheme to achieve nonreciprocal parity-time ( )-symmetric magnon laser in a -symmetric cavity optomagnonical system. The system consists of active and passive optical spinning resonators. We demonstrate that the Fizeau light-dragging effect induced by the spinning of a resonator results in significant variations in magnon gain and stimulated emitted magnon numbers for different driving directions.
View Article and Find Full Text PDFWe propose a scheme to achieve a tunable nonreciprocal magnon laser with parametric amplification in a hybrid cavity optomagnonical system, which consists a yttrium iron garnet (YIG) sphere and a spinning resonator. We demonstrate the control of magnon laser can be enhanced via parametric amplification, which make easier and more convenient to control the magnon laser. Moreover, we analyze and evaluate the effects of pump light input direction and amplification amplitude on the magnon gain and laser threshold power.
View Article and Find Full Text PDFIn the dispersive limit, the conventional photon blockade effect cannot be realized due to the absence of photon nonlinearity. We propose a scheme to recover the photon blockade effect of the dispersive Tavis-Cummings model, which makes it possible to realize the conventional photon blockade effect in the dispersive limit. It is shown that both single-photon and two-photon blockade effects can be recovered at appropriate qubit driving strength.
View Article and Find Full Text PDFSeveral schemes are proposed to realize the conversion of photonic polarized-entangled Greenberger-Horne-Zeilinger state to Knill-Laflamme-Milburn state in decoherence-free subspace (DFS) via weak cross-Kerr nonlinearity and X-quadrature homodyne measurement with high fidelity. DFS is introduced to decrease the decoherence effect caused by the coupling between the system and the environment. Optimizations to improve the success rate and utilization of residual states are further investigated.
View Article and Find Full Text PDFWe propose a simple scheme to generate quantum entanglement and one-way steering between distinct mode pairs in a generic cavity magnomechanical system, which is composed of a microwave cavity and a yttrium iron garnet sphere supporting magnon and phonon modes. The microwave cavity is pumped by a weak squeezed vacuum field, which plays an important role for establishing quantum entanglement and steering. It is found that when the magnon mode is driven by the red-detuned laser, the maximum entanglement between cavity mode and phonon mode and the maximum phonon-to-photon one-way steering can be effectively generated via adjusting the ratio of two coupling rates.
View Article and Find Full Text PDFThe purpose of this study was to evaluate the effects of dietary supplementation with microalgae ( sp.) containing docosahexaenoic acid (DHA) on the antioxidant enzyme activity, physicochemical quality, fatty acid composition and volatile compounds of beef meat. Eighteen male Qaidamford cattle were randomly allocated into three treatments ( = 6): no micro-algae supplementation (Control group, C), 100 g microalgae supplementation per bull per day (FD1), and 200 g microalgae supplementation per bull per day (FD2), and fed for 49 days before slaughter.
View Article and Find Full Text PDFWe theoretically and systematically investigate Anderson localization of two bosons with nearest-neighbor interaction in one dimension under short- and long-time scales, two types of disorders, and three types of initial states, which can be directly observed in linear disordered photonic lattices via two experimentally measurable physical quantities, participation ratio and spatial correlation. We find that the behavior of localization characterized by the participation ratio depends on the strength of interaction and the type of disorder and initial condition. Two-boson spatial correlation reveals more novel and unique features.
View Article and Find Full Text PDFCurrent information on the differences between rumen bacteria and metabolites of the grass-fed and grain-fed yaks is limited. Understanding the composition and alterations of rumen microbial metabolites is important to clarify its potential role in grass-fed and grain-fed systems. The aim of this research was to explore the influence of different production systems on the functional attributes and metabolites in the rumen microbiota of yak using genomics (Illumina MiSeq sequencing of the 16S rRNA gene) and untargeted metabolomics (UHPLC-QTOF-MS).
View Article and Find Full Text PDFWe propose a scheme to generate squeezed states of magnon and phonon modes and verify squeezing transfer between different modes of distinct frequencies in a cavity magnomechanical system which is composed of a microwave cavity and a yttrium iron garnet sphere. We present that by activating the magnetostrictive force in the ferrimagnet, realized by driving the magnon mode with red-detuned and blue-detuned microwave fields, the driven magnon mode can be prepared in a squeezed state. Moreover, the squeezing can be transferred to the cavity mode via the cavity-magnon beamsplitter interaction with strong magnomechanical coupling.
View Article and Find Full Text PDFWe propose a mechanism of Rydberg double antiblockade by virtue of a resonant dipole-dipole interaction between a pair of Rydberg atoms placed at short distances scaling as 1/R. By combining this novel excitation regime with microwave-driven fields and dissipative dynamics, a stationary qutrit entangled state can be obtained with high quality, the corresponding steady-state fidelity and purity are insensitive to the variations of the dynamical parameters. Furthermore, we introduce time-dependent laser fields with periodically modulated amplitude to speed up the entanglement creation process.
View Article and Find Full Text PDFWe investigate the localized photonic states and dynamic process in one-dimensional nonreciprocal coupled Su-Schrieffer-Heeger chain. Through numerical calculation of energy eigenvalue spectrum and state distributions of the system, we find that different localized photonic states with special energy eigenvalues can be induced by the nonreciprocal coupling, such as zero-energy edge states, interface states and bound states with pure imaginary energy eigenvalues. Moreover, we analyze the dynamic process of photonic states in such non-Hermitian system.
View Article and Find Full Text PDFSensors (Basel)
November 2020
Realistic synthetic data can be useful for data augmentation when training deep learning models to improve seismological detection and classification performance. In recent years, various deep learning techniques have been successfully applied in modern seismology. Due to the performance of deep learning depends on a sufficient volume of data, the data augmentation technique as a data-space solution is widely utilized.
View Article and Find Full Text PDFThe dissipative squeezing mechanism is an effective method to generate the strong squeezing, which is important in the precision metrology. Here, we propose a practical method to achieve arbitrary bosonic squeezing via introducing frequency modulation into the coupled harmonic resonator model. We analyze the effect of frequency modulation and give the analytical and numerical squeezing results, respectively.
View Article and Find Full Text PDFObjectives: To determine risk factors for peripheral arterial disease (PAD) in elderly patients with Type-2 diabetes mellitus.
Methods: The elderly patients with Type-2 diabetes treated in the Central Hospital of Cangzhou were enrolled and divided into PAD group and non-PAD group between October 2016 and November 2019, The data of the patients including age, gender, body mass index, blood pressure, hemoglobin A1c, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, total cholesterol, triglyceride, white cell count, lymphocyte count, high-sensitivity C-reactive protein, uric acid as well as living habits and complications of Type-2 diabetes mellitus were recorded to determine the risk factors for PAD.
Results: One thousand four hundred seventy six (1476) patients were enrolled, in which 465 patients were included in group of PAD, and 1011 in non-PAD group.
In recent years, microplastics have emerged as a new marine pollutant and have attracted wide research attention. As the main activity areas of human beings in the coastal environment, gulfs have always been the hotspots of marine pollution. However, the distribution of microplastics in most small and medium-sized coastal environments has been rarely reported in China.
View Article and Find Full Text PDFWe investigate the quantum walks of a single particle in a one-dimensional periodically kicked circuit quantum electrodynamics lattice. It is found that the dynamic process of the quantum walker is affected by the strength of incommensurate potentials and the driven periods of the system. We calculate the mean square displacement to illustrate the dynamic properties of the quantum walks, which shows that the localized process of the quantum walker presents the zero power-law index distribution.
View Article and Find Full Text PDFWe propose a scheme to enhance the single- and two-photon blockade effects significantly in a nonlinear hybrid optomechanical system with optical parametric amplification (OPA). The scheme does not rely on strong single-photon optomechanical coupling and can eliminate the disadvantages of suppressing multi-photon excitation incompletely. Through analyzing the single-photon blockade (1PB) mechanism and optimizing the system parameters, we obtain a perfect 1PB with a high occupancy probability of single-photon excitation, which means that a high-quality and efficient single-photon source can be generated.
View Article and Find Full Text PDFWe propose a scheme to achieve the photonic and the phononic state transfers via the topological protected edge channel based on a one-dimensional small optomechanical lattice. We find that the optomechanical lattice can be mapped into a Su-Schrieffer-Heeger model after eliminating the counter rotating wave terms. By dint of the edge channel of the Su-Schrieffer-Heeger model, we show that the quantum state transfer between the photonic left and the right edge states can be achieved with a high fidelity.
View Article and Find Full Text PDFWe present a proposal to generate robust optomechanical entanglement induced by the blue-detuning laser and the mechanical gain in a double-cavity optomechanical system. We show that the stability of the system can be obtained by introducing a cavity mode driven by the red-detuning laser in the blue-detuning regime. In contrast to the red-detuning regime, we find that the entanglement in the blue-detuning regime is extremely robust to temperature.
View Article and Find Full Text PDFWe propose an alternative entanglement swapping scheme based on the principle of the counterfactual quantum communication, which demonstrates nonlocal entanglement swapping can be achieved by the operations of a third party. During the whole process, it is not needed to transmit any physical particles among the participants. Furthermore, all the entangled particles are not destroyed in the counterfactual entanglement swapping process, which means we can obtain two pairs of nonlocal entanglement at the same time, thus achieve high-efficiency entanglement distribution.
View Article and Find Full Text PDF