Publications by authors named "Zhang Po"

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, often accompanied by impaired vascular endothelial function in the lower limbs. This dysfunction is characterized by a reduced vasodilatory response, leading to decreased blood flow in the lower limbs and ultimately contributing to the development of diabetic peripheral neuropathy. To delve deeper into this pathological process, the study employed bioinformatics to identify and analyze genes highly active in DPN.

View Article and Find Full Text PDF
Article Synopsis
  • * This study compared two filtration technologies: a smaller pressurized media filtration (PMF) plant and a larger dissolved air flotation filtration (DAFF) system, assessing their efficiency in removing protozoa and viruses using model organisms.
  • * The DAFF process was more effective in reducing bacteriophage levels than PMF, while both systems had comparable effectiveness for yeast; the study also examined trade-offs in energy usage and chemical consumption, providing insights for designing effective recycled water systems.
View Article and Find Full Text PDF

Tendons are fibrous connective tissues that transmit force from muscles to bones. Despite their ability to withstand various loads, tendons are susceptible to significant damage. The healing process of tendons and ligaments connected to bone surfaces after injury presents a clinical challenge due to the intricate structure, composition, cellular populations, and mechanics of the interface.

View Article and Find Full Text PDF

Under certain symmetry-breaking conditions, a superconducting system exhibits asymmetric critical currents, dubbed the "superconducting diode effect." Recently, systems with the ideal superconducting diode efficiency or unidirectional superconductivity have received considerable interest. In this work, we report the study of Al-InAs nanowire-Al Josephson junctions under microwave irradiation and magnetic fields.

View Article and Find Full Text PDF

Objective: Tibial plateau fractures are common intra-articular fractures that pose classification and treatment challenges for orthopedic surgeons.

Objective: This study examines the value of 3D printing for classifying and planning surgery for complex tibial plateau fractures.

Methods: We reviewed 54 complex tibial plateau fractures treated at our hospital from January 2017 to January 2019.

View Article and Find Full Text PDF

Background: Self-renewal of glioma stem cells (GSCs) is responsible for glioblastoma (GBM) therapy resistance and recurrence. Tumor necrosis factor α (TNFα) and TNF signaling pathway display an antitumor activity in preclinical models and in tumor patients. However, TNFα exhibits no significance for glioma clinical prognosis based on the Glioma Genome Atlas database.

View Article and Find Full Text PDF

We report an experimental study of quantum point contacts defined in a high-quality strained germanium quantum well with layered electric gates. At a zero magnetic field, we observed quantized conductance plateaus in units of 2/. Bias-spectroscopy measurements reveal that the energy spacing between successive one-dimensional subbands ranges from 1.

View Article and Find Full Text PDF

Myotendinous junction (MTJ) injuries are prevalent in clinical practice, yet the treatment approaches are limited to surgical suturing and conservative therapy, exhibiting a high recurrence rate. Current research on MTJ tissue engineering is scarce and lacks in vivo evaluation of repair efficacy. Here, we developed a three-dimensional-printed bioactive fiber-reinforced hydrogel containing mesenchymal stem cells (MSCs) and Klotho for structural and functional MTJ regeneration.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a lethal cancer characterized by hypervascularity and necrosis associated with hypoxia. Here, it is found that hypoxia preferentially induces the actin-binding protein, Transgelin (TAGLN), in GBM stem cells (GSCs). Mechanistically, TAGLN regulates HIF1α transcription and stabilizes HDAC2 to deacetylate p53 and maintain GSC self-renewal.

View Article and Find Full Text PDF

A carbon nanotube-doped octapeptide self-assembled hydrogel (FEK/C) and a hydrogel-based polycaprolactone PCL composite scaffold (FEK/C-S) were developed for cartilage and subchondral bone repair. The composite scaffold demonstrated modulated microstructure, mechanical properties, and conductivity by adjusting CNT concentration. In vitro evaluations showed enhanced cell proliferation, adhesion, and migration of articular cartilage cells, osteoblasts, and bone marrow mesenchymal stem cells.

View Article and Find Full Text PDF

Superconductor-semiconductor nanowire hybrid structures are useful in fabricating devices for quantum information processing. While selective area growth (SAG) offers the flexibility to grow semiconductor nanowires in arbitrary geometries, in situ evaporation of superconductors ensures pristine superconductor-semiconductor interfaces, resulting in strong induced superconductivity in the semiconducting nanowire. In this work, we used high-aspect-ratio SiO dielectric walls to in situ evaporate islands of superconductor tin on in-plane InAs SAG nanowires.

View Article and Find Full Text PDF

Background: Glioma stem cells (GSCs) are a subpopulation of tumor cells with self-renewal and tumorigenic capabilities in glioblastomas (GBMs). Diffuse infiltration of GSCs facilitates tumor progression and frustrates efforts at effective treatment. Further compounding this situation is the currently limited understanding of what drives GSC invasion.

View Article and Find Full Text PDF

Silk fibroin (SF) and sericin (SS), the two major proteins of silk, are attractive biomaterials with great potential in tissue engineering and regenerative medicine. However, their biochemical interactions with stem cells remain unclear. In this study, multiomics are employed to obtain a global view of the cellular processes and pathways of mesenchymal stem cells (MSCs) triggered by SF and SS to discern cell-biomaterial interactions at an in-depth, high-throughput molecular level.

View Article and Find Full Text PDF

Osteochondral defect (OCD) regeneration remains a great challenge. Recently, multilayer scaffold simulating native osteochondral structures have aroused broad interest in osteochondral tissue engineering. Here, we developed a 3D multifunctional bi-layer scaffold composed of a kartogenin (KGN)-loaded GelMA hydrogel (GelMA/KGN) as an upper layer mimicking a cartilage-specific extracellular matrix and a hydroxyapatite (HA)-coated 3D printed polycaprolactone porous scaffold (PCL/HA) as a lower layer simulating subchondral bone.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) account for 30-50% of glioma microenvironment. The interaction between glioma tumor cells and TAMs can promote tumor progression, but the intrinsic mechanisms remain unclear. Herein, we reported that soluble LRIG3 (sLRIG3) derived from glioma tumor cells can block the M2 polarization of TAMs via interacting with NETO2, thus suppressing GBM malignant progression.

View Article and Find Full Text PDF

Segmental bone defects over the self-healing threshold are a major challenge for orthopedics. Despite the advancements in clinical practice, traditional tissue engineering methods are limited by the addition of heterogeneous cells and cytokines, leading to carcinoma or other adverse effects. Here, we present a cell-free and cytokine-free strategy using an ECM-mimetic self-assembling peptide hydrogel (SAPH)- polycaprolactone (PCL) composite scaffold.

View Article and Find Full Text PDF

To improve the Al/Steel bimetallic interface, Eu was firstly added to the Al/Steel bimetallic interface made by liquid-solid casting. The effects of Eu addition on the microstructure, mechanical capacities, and rupture behavior of the Al/Steel bimetallic interface was studied in detail. As the addition of 0.

View Article and Find Full Text PDF

Diffuse intrinsic pontine glioma (DIPG) is the most lethal tumor involving the pediatric central nervous system. The median survival of children that are diagnosed with DIPG is only 9 to 11 months. More than 200 clinical trials have failed to increase the survival outcomes using conventional cytotoxic or myeloablative chemotherapy.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is the most common malignant brain tumor with poor clinical outcomes. Immunotherapy has recently been an attractive and promising treatment of extracranial malignancies, however, most of clinical trials for GBM immunotherapy failed due to predominant accumulation of tumor-associated microglia/macrophages (TAMs).

Results: High level of LRIG2/soluble LRIG2 (sLRIG2) expression activates immune-related signaling pathways, which are associated with poor prognosis in GBM patients.

View Article and Find Full Text PDF

Background: The continuous mutation of severe acute respiratory syndrome coronavirus 2 has made the coronavirus disease 2019 (COVID-19) pandemic complicated to predict and posed a severe challenge to the Beijing 2022 Winter Olympics and Winter Paralympics held in February and March 2022.

Methods: During the preparations for the Beijing 2022 Winter Olympics, we established a dynamic model with pulse detection and isolation effect to evaluate the effect of epidemic prevention and control measures such as entry policies, contact reduction, nucleic acid testing, tracking, isolation, and health monitoring in a closed-loop management environment, by simulating the transmission dynamics in assumed scenarios. We also compared the importance of each parameter in the combination of intervention measures through sensitivity analysis.

View Article and Find Full Text PDF

Efforts in the treatment of glioma which is the most common primary malignant tumor of the central nervous system, have not shown satisfactory results despite a comprehensive treatment model that combines various treatment methods, including immunotherapy. Cellular metabolism is a determinant of the viability and function of cancer cells as well as immune cells, and the interplay of immune regulation and metabolic reprogramming in tumors has become an active area of research in recent years. From the perspective of metabolism and immunity in the glioma microenvironment, we elaborated on arginine metabolic reprogramming in glioma cells, which leads to a decrease in arginine levels in the tumor microenvironment.

View Article and Find Full Text PDF

The aim of the present work was to comparatively investigate the generation and characteristics of fretting and sliding wear debris produced by CuNiAl against 42CrMo4. Tribological tests were conducted employing a self-developed tribometer. Most experimental conditions were set the same except for the amplitudes and number of cycles.

View Article and Find Full Text PDF

Osteochondral defects (OCD) cannot be efficiently repaired due to the unique physical architecture and the pathological microenvironment including enhanced oxidative stress and inflammation. Conventional strategies, such as the control of implant microstructure or the introduction of growth factors, have limited functions failing to manage these complex environments. Here we developed a multifunctional silk-based hydrogel incorporated with metal-organic framework nanozymes (CuTA@SF) to provide a suitable microenvironment for enhanced OCD regeneration.

View Article and Find Full Text PDF

In the glioblastoma (GBM) microenvironment, tumor-associated macrophages (TAMs) are prominent components and facilitate tumor growth. The exact molecular mechanisms underlying TAMs' function in promoting glioma stem cells (GSCs) maintenance and tumor growth remain largely unknown. We found a candidate molecule, transforming growth factor beta-induced (TGFBI), that was specifically expressed by TAMs and extremely low in GBM and GSC cells, and meanwhile closely related to glioma WHO grades and patient prognosis.

View Article and Find Full Text PDF
Article Synopsis
  • The study is a retrospective analysis involving 1159 patients who underwent percutaneous endoscopic lumbar discectomy (PELD) for lumbar disc herniation (LDH) between July 2014 and December 2019, aiming to predict recurrent lumbar disc herniation (rLDH) using machine learning models.
  • Significant factors influencing rLDH included body mass index (BMI), facet orientation, herniation type, Modic changes, and disc calcification, with various machine learning models, such as Extreme Gradient Boost (XGBoost) and Random Forest, showing strong predictive performance.
  • The findings suggest that using these machine learning models could improve decision-making and potentially reduce rLDH rates after PELD
View Article and Find Full Text PDF