Publications by authors named "Zhang Jian-Rong"

Cardiac myosin-binding protein C (cMyBP-C) is a novel cardiac marker of acute myocardial infarction (AMI) and acute cardiac injuries (ACI). Construction of point-of-care testing techniques capable of sensing cMyBP-C with high sensitivity and precision is urgently needed. Herein, we synthesized an Au@NGQDs@Au/Ag multi-shell nanoUrchins (MSNUs), and then applied it in a colorimetric/SERS dual-mode immunoassay for detection of cMyBP-C.

View Article and Find Full Text PDF

Hydrogen production by photosynthetic hybrid systems (PBSs) offers a promising avenue for renewable energy. However, the light-harvesting efficiency of PBSs remains constrained due to unclear intracellular kinetic factors. Here, we present an operando elucidation of the sluggish light-harvesting behavior for existing PBSs and strategies to circumvent them.

View Article and Find Full Text PDF

Understanding of DNA-mediated charge transport (CT) is significant for exploring circuits at the molecular scale. However, the fabrication of robust DNA wires remains challenging due to the persistence length and natural flexibility of DNA molecules. Moreover, CT regulation in DNA wires often relies on predesigned sequences, which limit their application and scalability.

View Article and Find Full Text PDF

Au-DNA self-assembled nanomachines can perform intelligent tasks such as sensing biomarkers and delivery of drug molecules through rational customization and programming. By virtue of their efficient signal amplification and flexible scalability, Au-DNA nanomachines have developed into one of the most promising nanodevices. In this review, we summarize the latest progress in Au-DNA self-assembled nanomachines for biosensing applications.

View Article and Find Full Text PDF

The emergence and global spread of bacterial resistance to conventionally used antibiotics have highlighted the urgent need for new antimicrobial agents that might replace antibiotics. Currently, nanomaterials hold considerable promise as antimicrobial agents in anti-inflammatory therapy. Due to their distinctive functional physicochemical characteristics and exceptional biocompatibility, carbon dots (CDs)-based composites have attracted a lot of attention in the context of these antimicrobial nanomaterials.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the effectiveness of smart health-based rehabilitation on patients with poststroke dysphagia (PSD).

Methods: We recruited 60 PSD patients and randomly allocated them to the intervention ( = 30) and control ( = 30) groups. The former received the smart health-based rehabilitation for 12 weeks, whereas the latter received routine rehabilitation.

View Article and Find Full Text PDF

Low efficiency of extracellular electron transfer (EET) is a major bottleneck in developing high-performance microbial fuel cells (MFCs). Herein, we construct MR-1@Au for the bioanode of MFCs. Through performance recovery experiments of mutants, we proved that abundant Au nanoparticles not only tightly covered the bacteria surface, but were also distributed in the periplasm and cytoplasm, and even embedded in the outer and inner membranes of the cell.

View Article and Find Full Text PDF

All-inorganic nanocrystals (NCs) are of great importance in a range of electronic devices. However, current all-inorganic NCs suffer from limitations in their optical properties, such as low fluorescence efficiencies. Here, we develop a general surface treatment strategy to obtain intensely luminescent all-inorganic NCs (ILANs) by using designed metal salts with noncoordinating anions that play a dual role in the surface treatment process: (i) removing the original organic ligands and (ii) binding to unpassivated Lewis basic sites to preserve the photoluminescent (PL) properties of the NCs.

View Article and Find Full Text PDF
Article Synopsis
  • The design of bio-chemical hybrid catalysts faces challenges due to differing chemical properties of bio-catalysts and chemical catalysts, which can result in performance loss.
  • A new method using natural enzyme scaffolds to confine metal nanoclusters is reported, which enhances catalytic performance by creating a synergistic effect between the enzyme and metal clusters.
  • The study presents bilirubin oxidase-Ir nanoclusters (BOD-Ir NCs) that show significantly increased activity for oxygen reduction and evolution reactions, stable performance over time, and leverage the combined strengths of both the enzyme and nanoclusters, indicating potential for broader applications in complex chemical reactions.
View Article and Find Full Text PDF

DNA nanomachines have been engineered into diverse personalized devices for diagnostic imaging of biomarkers; however, the regeneration of DNA nanomachines in living cells remains challenging. Here, we report an ingenious DNA nanomachine that can implement telomerase (TE)-activated regeneration in living cells. Upon apurinic/apyrimidinic endonuclease 1 (APE1)-responsive initiation of the nanomachine, the walker of the nanomachine moves along tracks regenerated by TE, generating multiply amplified signals through which APE1 can be imaged in situ.

View Article and Find Full Text PDF

Probing of the single-cell level extracellular electron transfer highlights the maximum output current for microbial fuel cells (MFCs) at hundreds of femtoampere per cell, which is difficult to achieve by existing devices. Past studies focus on the external factors for boosting charge-extraction efficiency from bacteria. Here, we elucidate the intracellular factors that determine this output limit by monitoring the respiratory-driven shrinking kinetics of a single magnetite nanoprobe immobilized on a single MR-1 cell with plasmonic imaging.

View Article and Find Full Text PDF

Accelerating diabetes-related chronic wound healing is a long-sought-after goal in diabetes management. However, therapeutic strategies based on antibiotics or catalysts still face great challenges to break the limitations of antimicrobial resistance, low HO and the blocking effect of bacterial biofilms on antibiotic/catalyst penetration. Herein, we reported a glucose biofuel cell-powered and drug-free antibacterial patch, which consisted of an MAF-7 protected glucose oxidase/horseradish peroxidase anode and a horseradish peroxidase cathode, for treating diabetic wounds.

View Article and Find Full Text PDF

Electrochemical reduction of CO into liquid fuels is a promising approach to achieving a carbon-neutral energy cycle but remains a great challenge due to the lack of efficient catalysts. Here, the hierarchical architectures assembled by ultrathin and porous S-modified Cu nanoflakes (Cu-S NFs) are designed and constructed as an efficient electrocatalyst for CO conversion to formate with high partial current density. Specifically, when integrated into a gas diffusion electrode in a flow cell, Cu-S NFs are capable of delivering the ultrahigh formate current density up to 404.

View Article and Find Full Text PDF

Microbial electro- and photoelectrochemical CO reduction represents an opportunity to tackle the environmental demand for sustainable fuel production. Nanomaterials critically impact the electricity- and solar-driven microbial CO reduction processes. This minireview comprehensively summarizes the recent developments in the configuration and design of nanomaterials for enhancement of the bacterial adhesion and extracellular electron transfer (EET) processes, based on the modification technologies of improving chemical stability, electrochemical conductivity, biocompatibility, and surface area.

View Article and Find Full Text PDF

The growth relationship between exosomes (EXOs) and the host cells is highly desired for tumor evaluations, which puts forward high demand on the accurate and convenient acquisition of their individual quantitative information. However, the tedious and destructive separation process and the requirement of dual-channel detection make it become an extremely challenging task. Herein, we integrated an enzymatic biofuel cell (EBFC)-powered biosensor with a flow cell-supported membrane separation device (FMSC) to develop a continuous separation and detection platform for EXOs and host cancer cells in human serum.

View Article and Find Full Text PDF

Developing efficient catalysts for electrochemical carbon monoxide reduction (ECOR) with high faradaic efficiency (FE) and current density is highly desirable. In this work, we demonstrate that the N-containing Cu nanoparticles formed by the reconstruction of cuprous 7,7,8,8-tetracyanoquinodimethane possess high-performance ECOR ability. Impressively, the N-containing Cu nanoparticle catalyst presented the highest FE of 81.

View Article and Find Full Text PDF

The dysfunctional islet β-cell triggered by excessive deposition of Zn constituted a striking indicator of the occurrence of diabetic disease. However, it remained a formidable challenge to reflect the real-time function of β-cell by monitoring the Zn content. Herein, multistage photoactivatable Zn-responsive nanodevice (denoted as AD2@USD1) was presented for sensing, regulating, and evaluating Zn levels in dysfunctional islet β-cells.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) possess a high degree of plasticity, constituting a formidable challenge to identify and screen CSCs in situ with outstanding specificity and sensitivity. To overcome this limitation, a self-assembled heterodimer consisting of clustered regularly interspaced short palindromic repeats/Cas12a (named A-CCA) linkage is designed for in situ identification and screening of gastric CSCs (GCSCs) from gastric cancer cells (GCCs). In this system, the editable character of crRNA performs recognition of dual-targets in GCSCs, effectively boosting the specificity of identification, while the enzymatic reaction of Cas12a contributes meaningfully to the sensitivity of sensing, enabling in situ examination and screening of GCSCs.

View Article and Find Full Text PDF

Self-assembled nanomaterials (SANs) exhibit designable biofunctions owing to their tunable nanostructures and modifiable surface. Various constituent units and multi-dimensional structures of SANs provide unlimited possibilities for numerous applications. This review emphasizes the recent development of SANs in the fields of biosensing, bioimaging, and nano-drug engineering.

View Article and Find Full Text PDF

Catalytic route electrochemiluminescence (ECL) microscopy enables imaging upper cell membranes with freely diffusing Ru(bpy) as the emitter and nitrogen-doped carbon dots as the nano-coreactants and labels. This strategy provides a vertical resolution when studying the ECL profiles at different heights and realizes the ECL imaging of the externalized phosphatidylserine.

View Article and Find Full Text PDF

Surface modification of exoelectrogens with photoelectric materials is a promising way for achieving photo-assisted microbial fuel cells (MFCs). However, the poor conductivity of most photoelectric materials inevitably hampers the electron transfer inside bacterial biofilms. Herein, by utilizing the electrostatic layer-by-layer assembly strategy, the conductive Au nanoparticles (NPs) and photo-responsive CdS NPs were alternatively modified onto the surface of Escherichia coli for photo-assisted bioanodes in MFCs.

View Article and Find Full Text PDF

The enzymatic biofuel cell (EBFC) has been considered as a promising implantable energy generator because it can extract energy from a living body without any harm to the host. However, an unprotected enzyme will be destabilized and even eventually be deactivated in human blood. Thus, the performance of implantable EBFC has received barely any improvement.

View Article and Find Full Text PDF

Because of insufficient information, a single biomarker is not sufficient for early diagnosis of cancer, whereas sensitive and selective detection of multiple biomolecules can significantly reduce analysis time, sample size, and accurately perform cell screening in early cancer. Therefore, the development of a noninvasive strategy that can simultaneously quantify multiple biomarkers (, nucleic acids, proteins, and small molecules) in a single cell is particularly important. Herein, a universal sensing system (functional DNA@mesoporous silica nanoparticles (MSN)-Black Hole Quencher-rhodamine 6G (RhB), FDSBR), which is based on the combination of functionalized DNA and smart responsive nanomaterial, was successfully constructed.

View Article and Find Full Text PDF

The effective capture, release and reanalysis of circulating tumor cells (CTCs) are of great significance to acquire tumor information and promote the progress of tumor therapy. Particularly, the selective release of multiple types of CTCs is critical to further study; however, it is still a great challenge. To meet this challenge, we designed a smart DNAzyme probe-based platform.

View Article and Find Full Text PDF

Endovascular therapy is the standard treatment for acute ischemic stroke (AIS) patients caused by a large vessel occlusion in the anterior circulation, whereas the impacts of general anesthesia (GA) vs. conscious sedation (CS) for such procedures remained as a continued debate. We systematically searched PubMed, Embase, and ClinicalTrials.

View Article and Find Full Text PDF