Metal halide perovskites (MHPs) display a range of superior photophysical properties, rendering them promising as a candidate for the active medium of high-efficiency photovoltaic and electroluminescence devices. In order to maximize their efficacy in photoelectric conversion or light emission, it is essential to regulate the charge separation efficiency of MHPs in a desired manner. Herein, we demonstrate that the extent of charge separation can be effectively manipulated upon thermal annealing treatment on MHPs.
View Article and Find Full Text PDFHemophilia A, caused by a deficiency in factor VIII (F8), is a promising target for gene therapy. This study aims to enhance the efficacy of adeno-associated virus serotype 8 (AAV8) vectors, specifically those encoding B-domain-deleted F8 (BDDF8), to treat the condition. We focused on improving therapeutic outcomes by strategically deleting amino acids at the furin cleavage site (RHQR), a modification that is crucial for increasing F8 expression and reducing capsid stress during vector packaging.
View Article and Find Full Text PDFThe light-harvesting complex 1-reaction center (LH1-RC) photosystem of the thermophilic purple sulfur bacterium Thermochromatium (Tch.) tepidum exhibits a near-infrared LH1-Q absorption band at 915 nm as regulated by binding calcium ions (Ca). To further explore the possible involvement of the C-terminal lysine residues of the LH1 α-polypeptide, we have genetically engineered a Rhodospirillum rubrum mutant strain to yield the site-directed modifications of the terminal α-Lys60 and α-Lys61 residues of Tch.
View Article and Find Full Text PDFPhotosynthetic organisms have developed various light-harvesting antenna systems to capture light and transfer energy to reaction centers (RCs). Simultaneous utilization of the integral membrane light-harvesting antenna (LH complex) and the extrinsic antenna (chlorosomes) makes the phototrophic bacterium Chloroflexus (Cfx.) aurantiacus an ideal model for studying filamentous anoxygenic phototrophs (FAPs).
View Article and Find Full Text PDFChlorophyll (Chl) is the most abundant light-harvesting pigment of oxygenic photosynthetic organisms; however, the Q-band energetics and relaxation dynamics remain unclear. In this work, we have applied femtosecond time-resolved (-TA) absorption spectroscopy in 430-1,700 nm to Chls and in diluted pyridine solutions under selective optical excitation within their Q-bands. The results revealed distinct near-infrared absorption features of the B ← Q and B ← Q transitions in 930-1,700 nm, which together with the steady-state absorption in 400-700 nm unveiled the Q-state energy that lies 1,000 ± 400 and 600 ± 400 cm above the Q-state for Chls and , respectively.
View Article and Find Full Text PDFBackground: Familial hypercholesterolemia (FH) is an inherited disorder mainly marked by increased low-density lipoprotein cholesterol (LDL-C) concentrations and a heightened risk of early-onset arteriosclerotic cardiovascular disease (ASCVD). This study seeks to characterize the genetic spectrum and genotype‒phenotype correlations of FH in Chinese pediatric individuals.
Methods: Data were gathered from individuals diagnosed with FH either clinically or genetically at multiple hospitals across mainland China from January 2016 to June 2024.
Trap state engineering has been widely employed to manipulate the dynamics of ion migration in metal halide perovskites (MHPs), a crucial factor associated with the performance and stability of MHP-based devices. However, the specific roles of different trap states remain poorly understood due to their complicated spatial and energetics distributions. Herein, we propose a methodology for independently regulating the distributions of bulk shallow and surface deep trap states in MHPs.
View Article and Find Full Text PDFEpithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) is one of the most important pathogenic mechanisms in lens fibrotic disorders, and the regulatory mechanisms of EMT have not been fully understood. Here, we demonstrate that the cAMP-response element binding protein (CREB) can regulate lens EMT in a phosphorylation-dependent and phosphorylation-independent manners with dual mechanisms. First, CREB-S133 phosphorylation is implicated in TGFβ-induced EMT of mouse LECs and also in injury-induced mouse anterior subcapsular cataract model.
View Article and Find Full Text PDFMicroplastics and nanoplastics (MPs/NPs) are emerging contaminants ubiquitous in the environment. These particles can act as carriers of hydrophobic organic compounds (HOCs), such as chlorpyrifos (CPF), an organophosphorus insecticide. This study investigates the acute toxicity of CPF combined with model polystyrene nanoplastics (PS-NPs) using Daphnia magna as a model organism.
View Article and Find Full Text PDFBackground: The microbial-gut-brain axis has received much attention in recent years, and regulating intestinal flora can effectively improve sleep disorders, which hints the potential effects of probiotics on sleep disorders, but lack of research evidence for meta-analysis. Therefore, this study aims to quantitatively evaluate the influence of probiotics on sleep disorders and sub-healthy sleep conditions.
Methods: Up to 2023, online databases including Pubmed, Embase, Cochrane library, Web of science have been searched for studies involving adults who consume probiotics or paraprobiotics in controlled trials, during which, changes in subjective and/or objective sleep parameters and contributing factors in sleeping quality are examined.
CRISPR-Cas9 editing triggers activation of the TP53-p21 pathway, but the impacts of different editing components and delivery methods have not been fully explored. In this study, we introduce a p21-mNeonGreen reporter iPSC line to monitor TP53-p21 pathway activation. This reporter enables dynamic tracking of p21 expression via flow cytometry, revealing a strong correlation between p21 expression and indel frequencies, and highlighting its utility in guide RNA screening.
View Article and Find Full Text PDFThe Lysosomal Protein Transmembrane 5 (LAPTM5) is a lysosomal transmembrane protein preferentially expressed in hematopoietic cells. The human LAPTM5 gene is located at position 1p34 and extends approximately 25 kb. Its protein includes five transmembrane domains, three PY motifs, and one UIM.
View Article and Find Full Text PDFRosemary is one of the most promising, versatile, and studied natural preservatives. Carnosic acid (CA) and carnosol (CARN), as the primary active ingredients of rosemary extracts, have little difference in structure, but their antioxidant activities vary significantly, depending on the system studied. The underlying molecular mechanisms remain unclear.
View Article and Find Full Text PDFThe potential for off-target mutations is a critical concern for the therapeutic application of CRISPR-Cas9 gene editing. Current detection methodologies, such as GUIDE-seq, exhibit limitations in oligonucleotide integration efficiency and sensitivity, which could hinder their utility in clinical settings. To address these issues, we introduce OliTag-seq, an in-cellulo assay specifically engineered to enhance the detection of off-target events.
View Article and Find Full Text PDFT cells are often absent from human cancer tissues during both spontaneously induced immunity and therapeutic immunotherapy, even in the presence of a functional T cell-recruiting chemokine system, suggesting the existence of T cell exclusion mechanisms that impair infiltration. Using a genome-wide in vitro screening platform, we identified a role for phospholipase A2 group 10 (PLA2G10) protein in T cell exclusion. PLA2G10 up-regulation is widespread in human cancers and is associated with poor T cell infiltration in tumor tissues.
View Article and Find Full Text PDFCD7-targeted chimeric antigen receptor T-cell (CAR-T) therapy has shown promising initial complete remission (CR) rates in patients with refractory or relapsed (r/r) T-cell acute lymphoblastic leukaemia and lymphoblastic lymphoma (T-ALL/LBL). To enhance the remission duration, consolidation with allogeneic haematopoietic stem cell transplantation (allo-HSCT) is considered. Our study delved into the outcomes of 34 patients with r/r T-ALL/LBL who underwent allo-HSCT after achieving CR with autologous CD7 CAR-T therapy.
View Article and Find Full Text PDFThe photosystem of filamentous anoxygenic phototroph (.) comprises a light-harvesting (LH) complex encircling a reaction center (RC), which intensely absorbs blue-green light by carotenoid (Car) and near-infrared light by bacteriochlorophyll (BChl). To explore the influence of light quality (color) on the photosynthetic activity, we compared the pigment compositions and triplet excitation dynamics of the LH-RCs from .
View Article and Find Full Text PDFIon migration activated by illumination is a critical factor responsible for the performance decline and stability degradation of perovskite solar cells (PSCs). While ion migration has been widely believed to be much slower than charge transport, recent research suggests that, despite the lack of understanding of the mechanism, it may also be involved in a series of rapid photoelectric responses of PSCs. Here, we report an improved circuit-switched transient photoelectric technique with nanosecond temporal resolution, which enables quantitative characterization of ion migration dynamics in PSCs across a fairly broad time window.
View Article and Find Full Text PDFBackground: CRISPR-Cas9 technology has advanced in vivo gene therapy for disorders like hemophilia A, notably through the successful targeted incorporation of the F8 gene into the Alb locus in hepatocytes, effectively curing this disorder in mice. However, thoroughly evaluating the safety and specificity of this therapy is essential. Our study introduces a novel methodology to analyze complex insertion sequences at the on-target edited locus, utilizing barcoded long-range PCR, CRISPR RNP-mediated deletion of unedited alleles, magnetic bead-based long amplicon enrichment, and nanopore sequencing.
View Article and Find Full Text PDFWe report a post-synthetic treatment method based on perfluorobutanesulfonic acid (PFBA) to ameliorate the photophysical performance of perovskite nanocrystals. By virtue of the PFBA treatment, both the photoluminescence efficiency and stability of perovskite quantum dot-based colloidal solutions and the electrical conductivity of their close-packed films are simultaneously improved.
View Article and Find Full Text PDFThe light harvesting-reaction center complex (LH-RC) of binds bacteriochlorophylls (BChls ), B800 and B880, absorbing around 800 and 880 nm, respectively. We comparatively investigated the interband excitation energy transfer (EET) dynamics of the wild-type LH-RC (wtLH-RC) of . and its carotenoid (Car)-less mutant (m-LH-RC) and found that Car can boost the B800 → B880 EET rate from (2.
View Article and Find Full Text PDFEngineering the buried interfaces of perovskite solar cells (PSCs) is crucial for optimizing the device performance. We herein report a novel strategy by modifying the ETL-FTO interface with MgO, as well as the interface between the perovskite layer (PVKL) and the SnO electron transfer layer (ETL) with formamidine bromide (FABr). The dual-interface ETL engineering substantially improved the photoelectric conversion efficiency (19.
View Article and Find Full Text PDF