Despite advancements in engineered heart tissue (EHT), challenges persist in achieving accurate dimensional accuracy of scaffolds and maturing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), a primary source of functional cardiac cells. Drawing inspiration from cardiac muscle fiber arrangement, a three-dimensional (3D)-printed multi-layered microporous polycaprolactone (PCL) scaffold is created with interlayer angles set at 45° to replicate the precise structure of native cardiac tissue. Compared with the control group and 90° PCL scaffolds, the 45° PCL scaffolds exhibited superior biocompatibility for cell culture and improved hiPSC-CM maturation in calcium handling.
View Article and Find Full Text PDFWetlands are important carbon sinks for mitigating climate warming. In this paper, greenhouse gas (GHG) fluxes and carbon sequestration capacity of freshwater wetlands, coastal wetlands and constructed wetlands around the world are evaluated, and strategies to improve carbon sequestration by wetlands are proposed based on the main influencing factors. Air temperature and average annual rainfall are significantly positively correlated with CH flux and NO flux in freshwater wetlands and coastal wetlands.
View Article and Find Full Text PDFObjective: This study was to employ 18F-flurodeoxyglucose (FDG-PET) to evaluate the resting-state brain glucose metabolism in a sample of 46 patients diagnosed with disorders of consciousness (DoC). The aim was to identify objective quantitative metabolic indicators and predictors that could potentially indicate the level of awareness in these patients.
Methods: A cohort of 46 patients underwent Coma Recovery Scale-Revised (CRS-R) assessments in order to distinguish between the minimally conscious state (MCS) and the unresponsive wakefulness syndrome (UWS).
Enhanced microbial remediation represents a promising technique for the removal of polycyclic aromatic hydrocarbons (PAHs). However, high-efficiency remediation agents remain limited, including microbial resources and remediation materials. In this study, a novel strain of Pseudomonas xizangensis S4 was isolated from plateau lake sediment, exhibiting a fluoranthene degradation rate of 41.
View Article and Find Full Text PDFEffectively identifying and preventing anomalies in the melt process significantly enhances production efficiency and product quality in industrial manufacturing. Consequently, this paper proposes a study on a melt anomaly identification system for pelletizers using autoencoder technology. It discusses the challenges of detecting anomalies in the melt extrusion process of polyester pelletizers, focusing on the limitations of manual monitoring and traditional image detection methods.
View Article and Find Full Text PDFInterpretable causal machine learning (ICML) was used to predict the performance of denitrification and clarify the relationships between influencing factors and denitrification. Multiple models were examined, and XG-Boost model provided the best prediction (R = 0.8743).
View Article and Find Full Text PDFThis paper presents significant improvements in the accuracy and computational efficiency of safety helmet detection within industrial environments through the optimization of the you only look once version 5 small (YOLOv5s) model structure and the enhancement of its loss function. We introduce the convolutional block attention module (CBAM) to bolster the model's sensitivity to key features, thereby enhancing detection accuracy. To address potential performance degradation issues associated with the complete intersection over union (CIoU) loss function in the original model, we implement the modified penalty-decay intersection over union (MPDIoU) loss function to achieve more stable and precise bounding box regression.
View Article and Find Full Text PDFEnhancing extracellular electron transfer (EET) efficiency is crucial for improving the anaerobic digestion (AD) system's capability to treat recalcitrant wastewater. In this study, a novel S, N co-doped biochar (S-N-BC) was prepared through surface engineering to optimize EET within AD systems. The addition of S-N-BC significantly enhanced the performance of a mesophilic AD system treating Congo red wastewater, increasing the decolorization rate by 78 %, COD degradation rate by 82 %, and methane yield by 87 % compared to the control.
View Article and Find Full Text PDFIschemic stroke is currently the second leading cause of mortality worldwide, with limited treatment options available. As resident immune cells, microglia promptly respond to cerebral ischemic injury, influencing neuroinflammatory damage and neurorepair. Studies suggest that microglia undergo metabolic reprogramming from mitochondrial oxidative phosphorylation to glycolysis in response to ischemia, significantly impacting their function during ischemic stroke.
View Article and Find Full Text PDFCausal inference-assisted machine learning was used to predict photosynthetic bacterial (PSB) protein production capacity and identify key factors. The extreme gradient boosting algorithm effectively predicted protein content, while the gradient boosting decision tree algorithm excelled in predicting protein production, protein productivity, and protein energy yields. Driving factors were identified, with suitable ranges: protein content (pH 6.
View Article and Find Full Text PDFLymphocyte activating gene-3 (LAG3) is a distinctive T cell co-receptor that is expressed on the surface of lymphocytes. It plays a special inhibitory immune checkpoint role due to its unique domain and signaling pattern. Our aim is to explore the correlation between LAG3 in cancers and physiological processes related to a range of cancers, as well as build LAG3-related immunity and prognostic models.
View Article and Find Full Text PDFIn this research, typical industrial scenarios were analyzed optimized by machine learning algorithms, which fills the gap of massive data and industrial requirements in ultrasonic sludge treatment. Principal component analysis showed that the ultrasonic density and ultrasonic time were positively correlated with soluble chemical oxygen demand (SCOD), total nitrogen (TN), and total phosphorus (TP). Within five machine learning models, the best model for SCOD prediction was XG-boost (R = 0.
View Article and Find Full Text PDFRhodopseudomonas palustris immobilized on multiple materials was used to invistigate Cr(VI) adsorption and bioreduction. The highest Cr(VI) removal (97.5%) was achieved at 276h under the opitimed conditions of 2.
View Article and Find Full Text PDFThe increasing interest in hydrogel matrices and their diverse applications has fueled extensive research. However, single-component gels have a limited adjustable performance range, and multi-component gels raise concerns about biological safety, hindering their widespread use. This study focuses on harnessing high-speed shearing and ultrasound-assisted methods to incorporate active natural Haematococcus pluvialis (HP), creating novel composite hydrogels in conjunction with biological macromolecule gellan gum, and eliminating the need for structural modifications or chemical crosslinking.
View Article and Find Full Text PDFRuminal microbes can efficiently ferment biomass waste to produce volatile fatty acids (VFAs). However, keeping long-term efficient VFA production efficiency has become a bottleneck. In this study, yeast culture (YC) was used to enhance the VFA production in long-term fermentation.
View Article and Find Full Text PDFBackground: The bowel preparation process prior to colonoscopy determines the quality of the bowel preparation, which in turn affects the quality of the colonoscopy. Colonoscopy is an essential procedure for postoperative follow-up monitoring of colorectal cancer (CRC) patients. Previous studies have shown that advanced age and a history of colorectal resection are both risk factors for inadequate bowel preparation.
View Article and Find Full Text PDFAnaerobic fungi (AF) efficiently degrade lignocellulosic biomass with unique pseudoroot system and enzymatic properties that can remove polysaccharides and some lignified components from plant cell walls, further releasing acetate, lactate, ethanol, hydrogen (H), etc. As research on AF for bioengineering has become a hot topic, a review of lignocellulosic conversion with AF for methane (CH) and H production is needed. Efficient degradation of lignocellulose with AF mainly relies on multiple free carbohydrate-active enzymes and cellulosomes in the free and bound state.
View Article and Find Full Text PDFPeripheral nerve injury (PNI), typically caused by traumatic accidents or medical events, is currently one of the most common diseases that leads to limb disability. After PNI, tetrodotoxin-resistant voltage-gated sodium channel Nav1.8 is upregulated at the lesion site.
View Article and Find Full Text PDFThe bacteria-algae synergistic wastewater treatment process not only efficiently eliminates nutrients and absorbs heavy metals, but also utilizes photosynthesis to convert light energy into chemical energy, generating valuable bioresource. The study systematically explores the formation, algal species, and regulatory strategies of the bacterial-algal symbiosis system. It provides a detailed analysis of various interaction mechanisms, with a particular focus on nutrient exchange, signal transduction, and gene transfer.
View Article and Find Full Text PDFSulfide stress is a common inhibition factor in anaerobic digestion systems with sulfur-rich feedstocks. Quorum sensing (QS) signaling molecule N-acyl-homoserine lactones (AHLs) possess positive effect on promoting anaerobic digestion. However, the micro-biological mechanisms of AHLs affecting syntrophic metabolism and microbial self-adaptation have not yet been deciphered in anaerobic digestion under sulfide stress.
View Article and Find Full Text PDFCurrent studies have demonstrated that microbe-host interactions (MHIs) play important roles in human public health. Therefore, identifying the interactions between microbes and hosts is beneficial to understanding the role of the microbiome and their underlying mechanisms. However, traditional wet-lab experimental approaches are insufficient for large-scale exploration of candidate microbes, as they are costly, laborious, and time-consuming.
View Article and Find Full Text PDF