By analyzing the expression patterns of inner root sheath (IRS) specific genes during different developmental stages of hair follicle (HF) in Tan sheep embryos and at birth, this study aims to reveal the influence of the IRS on crimped wool. Skin tissues from the scapular region of male Tan sheep were collected at 85 days (E85) and 120 days (E120) of fetal development, and at 0 days (D0), 35 days (D35), and 60 days (D60) after birth, with four samples at each stage. Real-time quantitative polymerase chain reaction (RT-qPCR) was employed to determine the relative expression levels of IRS type I keratin genes (KRT25, KRT26, KRT27, KRT28), type II keratin genes (KRT71, KRT72, KRT73, KRT74), and the trichohyalin gene (TCHH) in the skin of Tan sheep at different stages.
View Article and Find Full Text PDFZhongwei goat is a unique Chinese native goat breed for excellent lamb fur. The pattern of flower spikes of the lamb fur was significantly reduced due to the reduction of the bending of the hair strands with growth. In order to explore the molecular mechanism underlying hair bending with growth, we performed the comprehensive analysis of transcriptome and proteome of skins from 45-days, 108-days and 365-days goat based on TMT-based quantitative proteomics and RNA-seq methods.
View Article and Find Full Text PDFChinese Zhongwei goat is a rare and precious fur breed as its lamb fur is a well-known fur product. Wool bending of lamb fur of the Zhongwei goat is its most striking feature. However, the curvature of the wool decreases gradually with growth, which significantly affects its quality and economic value.
View Article and Find Full Text PDFThe Zhongwei goat is an important and unique goat breed indigenous to China. It has a natural hair curling phenotype at birth, but the degree of curling gradually decreases with growth. The molecular mechanism underlying the dynamic changes in the wool curvature in Zhongwei goats is poorly understood.
View Article and Find Full Text PDFThe Zhongwei goat is kept primarily for its beautiful white, curly pelt that appears when the kid is approximately 1 month old; however, this representative phenotype often changes to a less curly phenotype during postnatal development in a process that may be mediated by multiple molecular signals. DNA methylation plays important roles in mammalian cellular processes and is essential for the initiation of hair follicle (HF) development. Here, we sought to investigate the effects of genome-wide DNA methylation by combining expression profiles of the underlying curly fleece dynamics.
View Article and Find Full Text PDF