Publications by authors named "Zhanchao Liu"

Water pollution resulting from Hg(II) ions has garnered significant global concern for public health. The flexibility and simplicity of design, cost savings, and ease of operation with adaptive designs provide adsorption with a considerable advantage over other processes. However, MoS is hydrophobic in nature, which limits its efficiency in the removal of Hg(II) ions from water.

View Article and Find Full Text PDF

Triaxial magnetic field coils are one of the most important components of magnetic resonance sensors. Traditional measurement methods for coil constants and non-orthogonal angles using fluxgate magnetometers are no longer suitable for small-volume nuclear magnetic resonance sensors. This study presents a method for measuring the coil constants and nonorthogonal angles of triaxial nuclear magnetic resonance coils using the dynamics of the electron paramagnetic resonance magnetometer without requiring any additional calibration equipment.

View Article and Find Full Text PDF

In order to utilize the synergistic effect between a conductive polymer and an inorganic semiconductor to efficaciously enhance charge transfer and solve the problem of unsatisfactory performance of a single photocatalyst, thiophene (Th) was polymerized on the CdZnS nanoparticle surface to prepare a conductive polymer-inorganic polythiophene/CdZnS (PTh/CZS) heterostructrue through a simple in situ oxidation polymerization for the first time. The as-prepared PTh/CZS heterostructures significantly improved photocatalytic TCH degradation and hydrogen production activities. Especially, the 15PTh/CZS sample exhibited the optimal hydrogen production rate (18.

View Article and Find Full Text PDF

The Rb polarization-induced magnetic field gradient affects the Xe nuclear spin relaxation properties and degrades the long-term stability of the NMR co-magnetometers. This paper proposes a combination suppressing scheme, which uses the second-order magnetic field gradient coils to compensate for the Rb polarization-induced magnetic gradient under counter-propagating pump beams. Based on the theoretical simulation, we find that the spatial distribution of the Rb polarization-induced magnetic gradient and the magnetic field distribution generated by gradient coils are complementary.

View Article and Find Full Text PDF

The novel Cr(VI) anion-imprinted polymer (Cr(VI)-IIP) was prepared by a surface imprinting technique with bifunctional monomers pre-assembly system based on mesoporous silicon (SBA-15). The synthesized Cr(VI)-IIP was characterized by Fourier transmission infrared spectra (FT-IR), energy dispersive spectrometer (EDS), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray powder diffractometer, N adsorption-desorption and thermogravimetric analysis (TGA), proving to be with a highly ordered mesoporous structure, as well as favorable thermal stability. The saturated adsorption amount was 96.

View Article and Find Full Text PDF

The accuracy of inertial measurement performed by the nuclear magnetic resonance gyroscope (NMRG) with two isotopes depends on the duration of transverse relaxation. Extending the relaxation of the xenon isotopes at the same time plays a very important role in the accuracy of gyro. The relaxation time of Xe and Xe can be increased to about 15-20 s by optimizing the buffer gas pressure of N at about 0.

View Article and Find Full Text PDF

Light-driven splitting of water to produce H and reduction of molecular oxygen to synthesize HO from water are the emerging environmentally friendly methods for converting solar energy into green energy and chemicals. In this paper, vacancy defect and heterojunction engineering effectively adjusted the conduction band position of ZnInS, enriched the electron density, broadened the optical absorption range, increased the specific surface area, and accelerated the charge carrier transfer and separation of g-CN/sulfur-vacancy-containing ZnInS (CN/Vs-ZIS) heterostructures. As a result, all of the CN/Vs-ZIS heterostructures possessed greatly enhanced photocatalytic activities and the optimized sample 2CN/Vs-ZIS exhibited the highest visible-light photocatalytic performance.

View Article and Find Full Text PDF

In this work, a novel hierarchical 1D/2D core/shell SbS-ZnInS (SB-ZIS) heterostructure with highly efficient photocatalytic activities for both hydrogen production from water and organic pollutant degradation was designed and fabricated via a simple one-step hydrothermal method. The as-prepared SB-ZIS heterostructure, where ZnInS nanosheets uniformly grew onto SbS nanorod to form a tight and large intimate contacted interface, was conducive to improve the absorption capacity of light, increase the surface area, shorten the distance of electronic transmission channels and accelerate the separation and migration of photogenerated carriers. As a result, the presented SB-ZIS composites demonstrated significantly enhanced photocatalytic performances for H generation and Tetracycline Hydrochloride (TCH) photodegradation.

View Article and Find Full Text PDF

Transverse optical confinement in oxide-confined vertical-cavity surface-emitting lasers (VCSELs) crucially depends on thickness of oxide layer and its position relative to a standing wave. Modifying the structure reduces the overlap between the oxide layer and the standing wave as well as effective refractive index difference between core and cladding of the VCSEL that subsequently decreases of the number of transverse modes and increases the mode extension beyond oxide aperture. A 795 nm VCSEL is designed and fabricated with this concept.

View Article and Find Full Text PDF

Active removal of recalcitrant antibiotic contaminants for wastewater purification and hydrogen evolution from water splitting using hollow-structured photocatalysts has attracted considerable interest in the field of environmental governance and energy conversion. Herein, 0D TaN nanoparticles anchored on 3D TiO hollow nanosphere composites (0D/3D Ta/Ti) were designed and fabricated via a feasible surface self-assembly process for the first time. Various techniques were employed to characterize the structure and optical properties of the as-prepared samples.

View Article and Find Full Text PDF

In this work, 3D CdIn2S4 nano-octahedron/2D ZnO nanosheet heterojunctions (CIS/ZO-x) were fabricated for the first time via a facile and green impregnation-hydrothermal method, where three-dimensional (3D) CdIn2S4 nano-octahedra densely anchor onto both sides of 2D ZnO nanosheets to form an embedded nanostructure with intimate interfacial contacts. Various characterization techniques were adopted to measure the morphologies, structures and optical properties of the as-prepared CIS/ZO-x heterojunctions in detail. The photocatalytic performance of the as-prepared CIS/ZO-x was evaluated via the photodegradation of tetracycline hydrochloride (TCH) under visible light irradiation, and the result shows that the hybridization of ZnO nanosheets with CdIn2S4 nano-octahedra significantly enhances the photocatalytic activity of heterojunctions.

View Article and Find Full Text PDF

A polymer imprinted with acrylamide (AM-MIP) was synthesized on the surface of graphene oxide by surface polymerization of propionamide (serving as a dummy template), methacrylic acid (as the functional monomer) and ethylene glycol dimethacrylate (the cross-linker). ZnS quantum dots (QDs) doped with Mn(II) ions were added to the AM-MIP to act as fluorescence source. The AM-MIP was characterized by infrared spectroscopy, scanning electron microscopy and X-ray powder diffraction, suggesting that the imprinted layer was successfully grafted onto graphene oxide.

View Article and Find Full Text PDF

A tailor-made Cu(II) ion-imprinted polymer based on large-surface-area graphene oxide sheets has been synthesized for the preconcentration and determination of trace copper from food samples by solid-phase extraction. Attributed to the ultrahigh surface area and hydrophilicity of graphene oxide, the Cu(II) ion-imprinted polymer prepared by the surface ion-imprinting technique exhibited a high binding capacity and a fast adsorption rate under the optimized experimental conditions. In the static adsorption experiments, the maximum adsorption capacity of Cu(II) ion-imprinted polymer is 109.

View Article and Find Full Text PDF

In the present work, a novel two-dimensional (2D) nickel ion-imprinted polymer (RAFT-IIP) has been successfully synthesized based on the graphene oxide/SiO2 composite by reversible addition-fragmentation chain-transfer (RAFT) polymerization. The imprinted materials obtained are characterized by Fourier transmission infrared spectrometry (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The results show that the thermal stability of the graphene oxide/SiO2 composite is obviously higher than that of graphene oxide.

View Article and Find Full Text PDF

A novel Ce(III) ion-imprinted polymer (Ce(III)-IIP) has been prepared by surface imprinting technique with reversible addition-fragmentation chain transfer (RAFT) polymerization based on support matrix of SBA-15. The prepared adsorbent is characterized by FT-IR, XRD, SEM, TEM, nitrogen adsorption-desorption, GPC, and TGA. The results suggest that the surface imprinted polymer synthesized by RAFT is a thin layer.

View Article and Find Full Text PDF

In the present study, a Cr(III)-imprinted polymer (Cr(III)-IIP) was prepared by an easy one-step sol-gel reaction with a surface imprinting technique on the support of silica mesoporous material. A new SPE method for the speciation, separation, preconcentration, and determination of Cr(III) and Cr(VI) by inductively coupled plasma atomic emission spectrometry and UV on the mesoporous-imprinted polymer adsorbent was developed. The structure of the imprinted polymer was characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, transmission electron microscopy, and nitrogen adsorption-desorption isotherms.

View Article and Find Full Text PDF

In this study, a new Pb(II) ion-imprinted polymer (Pb(II)-IIP), which can be used for selective adsorption of Pb(II) from aqueous solutions, was successfully prepared based on the supported material of ordered mesoporous silica SBA-15 with the help of surface molecular imprinting technology. The prepared polymer was characterized by Fourier transmission infrared spectrometry, X-ray diffraction, transmission electron microscope and nitrogen adsorption-desorption isotherm. The results showed that the synthesized polymer possessed high ordered mesoporous structure.

View Article and Find Full Text PDF