Silk fibroin (SF) with good biocompatibility can enable an efficient and safe implementation of neural interfaces. However, it has been difficult to achieve a robust integration of patterned conducting materials (multichannel electrodes) on flexible SF film substrates due to the absence of some enduring interactions. In this study, a thermo-assisted pattern-transfer technique is demonstrated that can facilely transfer a layer of pre-set poly(3,4-ethylenedioxythiophene) (PEDOT) onto the flexible SF substrate through an interpenetrating network of 2 polymer chains, achieving a desired substrate/conductor intertwined interface with good flexibility (≈33 MPa), conductivity (386 S cm) and stability in liquid state over 4 months simultaneously.
View Article and Find Full Text PDFAs a natural high-performance material with a unique hierarchical structure, silk is endowed with superior mechanical properties. However, the current approaches towards producing regenerated silk fibroin (SF) for the preparation of biomedical devices fail to fully exploit the mechanical potential of native silk materials. In this study, using a top-down approach, we exfoliated natural silk fibers into silk nanofibrils (SNFs), through the disintegration of interfibrillar binding forces.
View Article and Find Full Text PDFNeural interface is a powerful tool to control the varying neuron activities in the brain, where the performance can directly affect the quality of recording neural signals and the reliability of connection between the brain and external equipment. Recent advances in bioelectronic innovation have provided promising pathways to fabricate flexible electrodes by integrating electrodes on bioactive polymer substrates. These bioactive polymer-based electrodes can enable the conformal contact with irregular tissue and result in low inflammation when compared to conventional rigid inorganic electrodes.
View Article and Find Full Text PDFNanofibrous aerogels have been extensively developed as multifunctional substrates in a wide range of fields. Natural silk nanofibrils (SNFs) are an appealing biopolymer due to their natural abundance, mechanical toughness, biodegradability, and excellent biocompatibility. However, fabricating 3D SNF materials with mechanical flexibility remains a challenge.
View Article and Find Full Text PDF