In boys with Duchenne muscular dystrophy (DMD), cardiomyopathy has become the primary cause of death. Although both positive late gadolinium enhancement (LGE) and reduced left ventricular ejection fraction (LVEF) are late findings in a DMD cohort, LV end-systolic circumferential strain at middle wall (E) serves as a biomarker for detecting early impairment in cardiac function associated with DMD. However, E derived from cine Displacement Encoding with Stimulated Echoes (DENSE) has not been quantified in boys with DMD.
View Article and Find Full Text PDFPurpose: Mouse models are widely utilized to enhance our understanding of cardiac disease. The goal of this study is to investigate the reproducibility of strain parameters that were measured in mice using cardiac magnetic resonance (CMR) feature-tracking (CMR42, Canada).
Methods: We retrospectively analyzed black-blood CMR datasets from thirteen C57BL/6 B6.
Background: While multiple cardiovascular magnetic resonance (CMR) methods provide excellent reproducibility of global circumferential and global longitudinal strain, achieving highly reproducible segmental strain is more challenging. Previous single-center studies have demonstrated excellent reproducibility of displacement encoding with stimulated echoes (DENSE) segmental circumferential strain. The present study evaluated the reproducibility of DENSE for measurement of whole-slice or global circumferential (E), longitudinal (E) and radial (E) strain, torsion, and segmental E at multiple centers.
View Article and Find Full Text PDFCardiomyopathy is the leading cause of mortality in boys with Duchenne muscular dystrophy (DMD). Left ventricular (LV) peak mid-wall circumferential strain (E) is a sensitive early biomarker for evaluating both the subtle and variable onset and the progression of cardiomyopathy in pediatric subjects with DMD. Cine Displacement Encoding with Stimulated Echoes (DENSE) has proven sensitive to changes in E, but its reproducibility has not been reported in a pediatric cohort or a DMD cohort.
View Article and Find Full Text PDFStatistical data from clinical studies suggests that right ventricular (RV) circumferential strain (E) and longitudinal strain (E) are significant biomarkers for many cardiovascular diseases. However, a detailed and regional characterization of these strains in the RV is very limited. In the current study, RV images were obtained with 3D spiral cine DENSE MRI in healthy rats.
View Article and Find Full Text PDFThe present study assessed the acute effects of isoproterenol on left ventricular (LV) mechanics in healthy rats with the hypothesis that β-adrenergic stimulation influences the mechanics of different myocardial regions of the LV wall in different ways. To accomplish this, magnetic resonance images were obtained in the LV of healthy rats with or without isoproterenol infusion. The LV contours were divided into basal, midventricular, and apical regions.
View Article and Find Full Text PDFFinite element (FE) modeling is becoming a widely used approach for the investigation of global heart function. In the present study, a novel model of cellular-level systolic contraction, which includes both length- and velocity-dependence, was implemented into a 3D non-linear FE code. To validate this new FE implementation, an optimization procedure was used to determine the contractile parameters, associated with sarcomeric function, by comparing FE-predicted pressure and strain to experimental measures collected with magnetic resonance imaging and catheterization in the ventricles of five healthy rats.
View Article and Find Full Text PDFRat models have assumed an increasingly important role in cardiac research. However, a detailed profile of regional cardiac mechanics, such as strains and torsion, is lacking for rats. We hypothesized that healthy rat left ventricles (LVs) exhibit regional differences in cardiac mechanics, which are part of normal function.
View Article and Find Full Text PDF