Publications by authors named "Zhan-Qing Yang"

Transcriptional co-activator with PDZ-binding motif (TAZ), one of core modules of the Hippo pathway, involves inflammatory cell infiltration in the liver, but little information is available regarding its physiological function in the microglia-mediated inflammatory response. Here we revealed that activation of TAZ prevented microglia production of proinflammatory cytokines, indicating TAZ's importance in anti-inflammation. After translocation into the nucleus, TAZ interacted with transcriptional enhanced associate domain (TEAD) and bound to the promoter of nuclear factor erythroid 2-related factor 2 (Nrf2), whose blockage caused inability of TAZ to improve inflammation, implying that Nrf2 is a direct target of TAZ.

View Article and Find Full Text PDF

Yap is required for ovarian follicle and early embryo development, but little information is available regarding its physiological significance in decidualization. Here we determine the effects of YAP on decidualization, mitochondrial function, cell apoptosis and DNA damage, and explore its interplay with Bmp2, Rrm2, GSH and ROS. The results exhibited that Yap was abundant in decidual cells and its inactivation impaired the proliferation and differentiation of stromal cells along with the deferral of G1/S phase transition, indicating Yap importance in decidualization.

View Article and Find Full Text PDF

TAZ, as a crucial effector of Hippo pathway, is required for spermatogenesis and fertilization, but little is known regarding its physiological function in uterine decidualization. In this study, we showed that TAZ was localized in the decidua, where it promoted stromal cell proliferation followed by accelerated G1/S phase transition via Ccnd3 and Cdk4 and induced the expression or activity of stromal differentiation markers Prl8a2, Prl3c1 and ALP, indicating the importance of TAZ in decidualization. Knockdown of TAZ impeded HB-EGF induction of stromal cell proliferation and differentiation.

View Article and Find Full Text PDF

Polycystic ovarian syndrome (PCOS) is a complex endocrinopathy in women of reproductive age and the main cause of female infertility, but there is no universal drug for PCOS therapy. As a predominant dietary isoflavone present in soybeans, genistein (GEN) possesses estrogenic and antioxidative properties, but limited information is available regarding its therapeutic potential and underlying molecular mechanism in PCOS. In this study, we found that GEN might restore the estrous cycle of PCOS mice and ameliorate the elevation of circulating T, AMH and LH levels as well as LH/FSH ratios along with reduced cystic follicles, indicating the importance of GEN in PCOS therapy.

View Article and Find Full Text PDF

Serpinb6b is a novel member of Serpinb family and found in germ and somatic cells of mouse gonads, but its physiological function in uterine decidualization remains unclear. The present study revealed that abundant Serpinb6b was noted in decidual cells, and advanced the proliferation and differentiation of stromal cells, indicating a creative role of Serpinb6b in uterine decidualization. Further analysis found that Serpinb6b modulated the expression of Mmp2 and Mmp9.

View Article and Find Full Text PDF

The desert hedgehog (Dhh) is crucial for spermatogenesis and Leydig cell differentiation, but little is known regarding its physiological function in cartilage. In this study, Dhh mRNA was abundant in antler chondrocytes, where it advanced cell proliferation concomitant with accelerated transition from the G1 to the S phase and induced elevation of the hypertrophic chondrocyte markers, Col X and Runx2. Silencing of Ptch1 resulted in appreciable Smo accumulation and enhanced rDhh stimulation of Smo, whose impediment by cyclopamine obscured the proliferative function of Dhh and alleviated its guidance of chondrocyte differentiation.

View Article and Find Full Text PDF

Malic enzyme 1 (Me1), a member of the malic enzymes involving in glycolytic pathway and citric acid cycle, is essential for the energy metabolism and maintenance of intracellular redox balance state, but its physiological role and regulatory mechanism in the uterine decidualization are still unknown. Current study showed that Me1 was strongly expressed in decidual cells, and could promote the proliferation and differentiation of stromal cells followed by an accelerated cell cycle transition, indicating an importance of Me1 in the uterine decidualization. Silencing of Me1 attenuated NADPH generation and reduced GR activity, while addition of NADPH improved the defect of GR activity elicited by Me1 depletion.

View Article and Find Full Text PDF

HB-EGF is essential for uterine decidualization, but its antioxidant function remains largely unclear. Here, we found that HB-EGF promoted the proliferation of stromal cells followed by the accelerated transition of the cell cycle from G1 to S phase and enhanced the expression or activity of Prl8a2, Prl3c1, and ALP which were well-established markers for uterine stromal cell differentiation during decidualization. Under oxidative stress, stromal cell differentiation was impaired, but this impairment was abrogated by rHB-EGF accompanied with the reduced levels of ROS and MDA which were regarded as the biomarkers for oxidative stress, indicating an antioxidant role of HB-EGF.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? What are the potential therapeutic roles of ginsenoside Rb1 and hydroxysafflor yellow A (HSYA) in polycystic ovary syndrome (PCOS). What is the main finding and its importance? HSYA restored the oestrous cycles of PCOS mice, reduced follicular cysts in ovaries and rescued abnormal hormone secretion; ginsenoside Rb1 did not ameliorate the main symptoms of PCOS mice. HSYA alleviated oxidative stress along with an enhancement of antioxidant enzyme activity.

View Article and Find Full Text PDF

Genistein is an isoflavone that has estrogen (E )-like activity and is beneficial for follicular development, but little is known regarding its function in oxidative stress (OS)-mediated granulosa cell (GC) injury. Here, we found that after exposure to H O , Genistein weakened the elevated levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), which were regarded as the biomarkers for OS, and rescued glutathione (GSH) content and GSH/GSSG ratio accompanying with a simultaneous increase in cyclic adenosine monophosphate (cAMP) level, whereas addition of protein kinase A (PKA) inhibitor H89 impeded the effects of Genistein on the levels of ROS and MDA. Further analysis evidenced that Genistein enhanced the activities of antioxidant enzymes superoxide dismutase (SOD), GSH-peroxidase (GSH-Px), and catalase (CAT) in H O -treated GCs, but this enhancement was attenuated by H89.

View Article and Find Full Text PDF

Objectives: Chondrocyte proliferation and differentiation are crucial for endochondral ossification, but their regulatory mechanism remains unclear. The present study aimed to determine the physiological function of TGFβ1 signalling in the proliferation and differentiation of antler chondrocytes and explore its relationship with Notch, Shh signalling and Foxa.

Materials And Methods: Immunofluorescence, Western blot, MTS assay, flow cytometry, RNA interference and real-time PCR were used to analyse the function and regulatory mechanisms of TGFβ1 signalling in antler chondrocyte proliferation and differentiation.

View Article and Find Full Text PDF

Chondrocyte proliferation and differentiation are crucial for endochondral ossification and strictly regulated by numerous signaling molecules and transcription factors, but the hierarchical regulatory network remains to be deciphered. The present study emphasized the interplay of Activin A, Foxa, Notch and Shh signaling in the proliferation and differentiation of antler chondrocytes. We found that Activin A promoted chondrocyte proliferation and differentiation, and accelerated the transition of cell cycle from G1 into S phase along with the activation of Notch and Shh signaling whose blockage attenuated above function of Activin A.

View Article and Find Full Text PDF

Background/aims: High mobility group box 1 (Hmgb1) is associated with a variety of physiological processes including embryonic development, cell proliferation and differentiation, but little information is available regarding its biological role in decidualization.

Methods: In situ hybridization, real-time PCR, RNA interference, gene overexpression and MTS assay were used to analyze the spatiotemporal expression of Hmgb1 in mouse uterus during the pre-implantation period, and explore its function and regulatory mechanisms during uterine decidualization.

Results: Hmgb1 mRNA was obviously observed in uterine epithelium on day 2 and 3 of pregnancy, but its expression was scarcely detected on day 4 of pregnancy.

View Article and Find Full Text PDF

Uterine decidualization is crucial for placenta formation and pregnancy maintenance. Although previous studies have reported that high mobility group box 3 (Hmgb3) is involved in the regulation of cellular proliferation and differentiation, little is known regarding its physiological role in uterine decidualization. Here, in situ hybridization result exhibited a dynamic expression pattern of Hmgb3 messenger RNA (mRNA) during early gestation, and it was mainly localized to the decidua on days 6 to 8 of gestation.

View Article and Find Full Text PDF

Although Egr2 is involved in regulating the folliculogenesis and ovulation, there is almost no data describing its physiological function in embryo implantation and decidualization. Here, we showed that Egr2 mRNA was distinctly accumulated in subluminal stromal cells around implanting blastocyst on day 5 of pregnancy as well as in estrogen-activated implantation uterus. Estrogen induced the expression of Egr2 in uterine epithelia.

View Article and Find Full Text PDF

Background/aims: Hmgn2 is involved in regulating embryonic development, but its physiological function during embryo implantation and decidualization remains unknown.

Methods: In situ hybridization, real-time PCR, RNA interference, gene overexpression and MTS assay were used to examine the expression of Hmgn2 in mouse uterus during the pre-implantation period and explore its function and regulatory mechanisms in epithelial adhesion junction and stromal cell proliferation and differentiation.

Results: Hmgn2 was primarily accumulated in uterine luminal epithelia on day 4 of pregnancy and subluminal stromal cells around the implanting blastocyst at implantation sites on day 5.

View Article and Find Full Text PDF

Ptn is a pleiotropic growth factor involving in the regulation of cellular proliferation and differentiation, but its biological function in uterine decidualization remains unknown. Here, we showed that Ptn was highly expressed in the decidual cells, and could induce the proliferation of uterine stromal cells and expression of Prl8a2 and Prl3c1 which were two well-established differentiation markers for decidualization, suggesting an important role of Ptn in decidualization. In the uterine stromal cells, progesterone stimulated the expression of Ptn accompanied with an accumulation of intracellular cAMP level.

View Article and Find Full Text PDF

Although all-trans retinoic acid (ATRA) is involved in the regulation of cartilage growth and development, its regulatory mechanisms remain unknown. Here, we showed that ATRA could induce the expression of COL9A1 in antler chondrocytes. Silencing of cellular retinoic acid binding protein 2 (CRABP2) could impede the ATRA-induced upregulation of COL9A1, whereas overexpression of CRABP2 presented the opposite effect.

View Article and Find Full Text PDF

The cartilage vascularization and chondrocyte survival are essential for endochondral ossification which occurs in the process of antler growth. Angiopoietins (Ang) is a family of major angiogenic growth factors and involved in regulating the vascularization. However, the expression and regulation of Angs in the antler are still unknown.

View Article and Find Full Text PDF

Although ATRA is involved in regulating the proliferation and differentiation of chondrocytes, its underlying mechanism remains unknown. Here we showed that ATRA could stimulate the proliferation of antler chondrocytes and expression of COL X and MMP13 which were two well-known markers for hypertrophic chondrocytes. Silencing of CRABP2 prevented the induction of ATRA on chondrocyte terminal differentiation, while overexpression of CRABP2 exhibited the opposite effects.

View Article and Find Full Text PDF

Although has been proved to play an important role in uterine decidualization, its regulatory mechanism remains largely unknown. Here, we showed that was highly expressed in the decidual cells and promoted the proliferation of uterine stromal cells and expression of and , which were two well-known differentiation markers for decidualization. Further analysis revealed that might act downstream of and cAMP to regulate the differentiation of uterine stromal cells.

View Article and Find Full Text PDF

Although 13cRA is involved in the regulation of cellular proliferation and differentiation, its physiological roles in chondrocyte proliferation and differentiation still remain unknown. Here, we showed that 13cRA could induce the proliferation of sika deer antler chondrocytes and expression of Ccnd3 and Cdk6. Administration of 13cRA to antler chondrocytes resulted in an obvious increase in the expression of chondrocyte marker Col II and hypertrophic chondrocyte marker Col X.

View Article and Find Full Text PDF

Although IGF1 is important for the proliferation and differentiation of chondrocytes, its underlying molecular mechanism is still unknown. Here we addressed the physiologic function of IGF1 in antler cartilage and explored the interplay of IGF1, IRS1/2 and RUNX1 in chondrocyte differentiation. The results showed that IGF1 was highly expressed in antler chondrocytes.

View Article and Find Full Text PDF

Although Runx2 is involved in the regulation of cellular differentiation, its physiological roles in the differentiation of uterine stromal cells during decidualization still remain unknown. The aim of this study was to examine the expression, regulation and function of Runx2 in mouse uterus during decidualization. The results showed that Runx2 was highly expressed in the decidua and oil-induced decidualized cells.

View Article and Find Full Text PDF

Although Hmgn5 is involved in the regulation of cellular proliferation and differentiation, its physiological function during decidualization is still unknown. Here we showed that Hmgn5 was highly expressed in the decidual cells. Silencing of Hmgn5 expression by specific siRNA reduced the proliferation of uterine stromal cells and expression of Ccnd3 and Cdk4 in the absence or presence of estrogen and progesterone, whereas overexpression of Hmgn5 exhibited the opposite effects.

View Article and Find Full Text PDF