Interferometric LiDAR is a device that is used to achieve distance, velocity and phase estimation with high precision and resolution through the use of frequency-modulated continuous wave (FMCW). In this instance, we study quantum enhancement detection techniques for a Mach-Zender interferometer with a FMCW coherent state input. Various quantum detection methods-including NOON state detection, coincidence detection, and sum of parity detection-are applied to the FMCW coherent state and compared against the classical heterodyne detection technique.
View Article and Find Full Text PDFThe holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics.
View Article and Find Full Text PDFFluctuations of local fields cause decoherence of quantum objects. Usually at high temperatures, thermal noises are much stronger than quantum fluctuations unless the thermal effects are suppressed by certain techniques such as spin echo. Here we report the discovery of strong quantum-fluctuation effects of nuclear spin baths on free-induction decay of single electron spins in solids at room temperature.
View Article and Find Full Text PDF