Publications by authors named "Zhaleh Pourmoazzen"

Cellulose nanocrystals (CNC) were prepared using acid hydrolysis of cellulose fiber. The CNC modified topo-chemically by grafting of bulky cholesterol moieties which changed subsequent morphology, thermal behavior, lyotropic crystalline properties, and host-guest release behavior. Bond formation between the cellulose nanocrystals surfaces and cholesterol was confirmed by FT-IR and solid-state NMR.

View Article and Find Full Text PDF

Two fractions of kraft lignin of low and high molecular weight were reacted with cholesteryl chloroformate (Chol.Cl) to produce a modified lignin that demonstrated very high hydrophobicity. Surprisingly, both fractions displayed discernible melting points as opposed to the starting lignin.

View Article and Find Full Text PDF

The aim of this study was the design and evaluation of a novel plasma stable, pH-sensitive niosomal formulation of Mitoxantrone by a modified ethanol injection method. Cholesterol hemisuccinate was added instead of cholesterol in order to produce pH-sensitivity property and using PEG-Poly (monomethyl itaconate)-CholC6 (PEG-PMMI-CholC6) copolymer introduced simultaneously pH-sensitivity and plasma stability properties in prepared niosomes. The pH-sensitivity and cytotoxicity of Mitoxantrone niosomes were evaluated in vitro in phosphate buffer with different pHs as well as using human ovarian cancer cell line (OVCAR-3), human breast cancer cell line (MCF-7) and human umbilical vein endothelial cells (HUVEC).

View Article and Find Full Text PDF

Present research is a preliminary report on the novel pH-responsive micelles based on an amphiphilic brush copolymer P(PEGMA)-b-P(DMAEMA-co-CPLAMA) used as the promising drug carrier. The copolymer was synthesized using cholesteryl poly(L-lactic acid) methacrylate (CPLAMA), poly(ethylene glycol) monomethyl ether methacrylate (PEGMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) with appropriate hydrophobic/hydrophilic ratios via atom transfer radical polymerization. The copolymer compositions were determined by H NMR.

View Article and Find Full Text PDF

pH-responsive polymers produce liposomes with pH-sensitive property which can release their encapsulated drug under mild acidic conditions found inside the cellular endosomes, inflammatory tissues and cancerous cells. The aim of this study was preparing pH-sensitive and plasma stable liposomes in order to enhance the selectivity and antiproliferative effect of Rapamycin. In the present study we used PEG-poly (monomethylitaconate)-CholC6 (PEG-PMMI-CholC6) copolymer and Oleic acid (OA) to induce pH-sensitive property in Rapamycin liposomes.

View Article and Find Full Text PDF

pH-sensitive liposomes are designed to undergo acid-triggered destabilization. In the present study, we prepared polymer-modified, plasma stable, pH-sensitive fusogenic mitoxantrone liposomes to increase efficacy and selectivity on cancer cell lines. Conventional liposomes were prepared using cholesterol and dipalmitoyl-sn-glycero-3-phosphatidylethanolamine.

View Article and Find Full Text PDF

Objective: The purpose of the present investigation was to prepare a plasma stable, pH-sensitive niosomal formulation to enhance Sirolimus efficacy and selectivity.

Materials And Methods: pH-sensitive niosomal formulations bearing PEG-Poly (monomethyl itaconate)-CholC6 (PEG-PMMI-CholC6) copolymers and cholesteryl hemisuccinate (CHEMS) were prepared by a modified ethanol injection method and characterized with regard to pH-responsiveness and stability in human serum. The ability of pH-sensitive niosomes to enhance the Sirolimus cytotoxicity was evaluated in vitro using human erythromyeloblastoid leukemia cell line (K562) and compared with cytotoxicity effect on human umbilical vein endothelial cells (HUVEC).

View Article and Find Full Text PDF