Sensors (Basel)
January 2025
According to the physical characteristics of cotton and the work characteristics of cotton pickers in the field, during the picking process, there is a risk of cotton combustion. The cotton picker working environment is complex, cotton ignition can be hidden, and fire is difficult to detect. Therefore, in this study, we designed an improved algorithm for multi-sensor data fusion; built a cotton picker fire detection system by using infrared temperature sensors, CO sensors, and the upper computer; and proposed a BP neural network model based on improved mutation operator hybrid gray wolf optimizer and particle swarm optimization (MGWO-PSO) algorithm based on the BP neural network model.
View Article and Find Full Text PDFDetecting the moisture content of grain accurately and rapidly has important significance for harvesting, transport, storage, processing, and precision agriculture. There are some problems with the slow detection speeds, unstable detection, and low detection accuracy of moisture contents in corn harvesters. In that case, an online moisture detection device was designed, which is based on double capacitors.
View Article and Find Full Text PDF