Curr Cancer Drug Targets
March 2025
The ubiquitin-proteasome system is a fundamental regulatory mechanism that governs protein stability and intracellular signaling in eukaryotic cells. This system relies on a coordinated cascade of enzymatic activities involving activating enzymes, conjugating enzymes, and ligases to assemble distinct ubiquitin signals. These signals are subsequently edited, removed, or interpreted by deubiquitinases and ubiquitin-binding proteins.
View Article and Find Full Text PDFThe KRAS inhibitor MRTX1133 shows the potential to revolutionize the treatment paradigm for pancreatic ductal adenocarcinoma (PDAC), yet presents challenges. Our findings indicate that KRAS remodels a pentose phosphate pathway (PPP)-dominant central carbon metabolism pattern, facilitating malignant progression and resistance to MRTX1133 in PDAC. Mechanistically, KRAS drives excessive degradation of p53 and glucose-6-phosphate dehydrogenase (G6PD)-mediated PPP reprogramming through retinoblastoma (Rb)/E2F1/p53 axis-regulated feedback loops that amplify ubiquitin-conjugating enzyme E2T (UBE2T) transcription.
View Article and Find Full Text PDFBreast cancer stem cells (BCSCs) are the main cause of breast cancer recurrence and metastasis. While the ubiquitin-proteasome system contributes to the regulation of BCSC stemness, the underlying mechanisms remain unclear. Here, we identified ubiquitin-conjugating enzyme E2T (UBE2T) as a pivotal ubiquitin enzyme regulating BCSC stemness through systemic screening assays, including single-cell RNA sequencing (scRNA-seq) and stemness-index analysis.
View Article and Find Full Text PDFKraits are venomous snakes of the genus from the family . Their venom typically demonstrates neurotoxicity; however, the toxicity is significantly influenced by the snake's species and geographical origin. Among the species, and have been poorly studied, with little to no information available regarding their venom composition.
View Article and Find Full Text PDFBackground: Perivascular epithelioid cell tumor (PEComa) is a rare mesenchymal neoplasm that predominantly affects the kidney and uterus. The occurrence of this tumor in the liver, particularly with simultaneous involvement of the liver and kidney, is exceedingly uncommon. Pathological diagnosis is the gold standard.
View Article and Find Full Text PDFThe 5-fluorouracil (5-FU)-based chemotherapy regimen is a primary strategy for treating pancreatic cancer (PC). However, challenges related to 5-FU resistance persist. Investigating the mechanisms of 5-FU resistance and identifying a clinically viable therapeutic strategy are crucial for improving the prognosis of PC.
View Article and Find Full Text PDFPrimary cilia detect and transmit environmental signals into cells. Primary cilia are absent in a subset of ductal carcinomas characterized by distinctive biological activities, and recovery of cilia with normal functionality has been shown to have therapeutic potential in some cancer types. Therefore, elucidation of the underlying mechanism and clinical significance of ciliary loss in ductal carcinomas could help develop effective treatment strategies.
View Article and Find Full Text PDFAlthough targeting the androgen signaling pathway by androgen receptor (AR) inhibitors, including enzalutamide, has shown therapeutic effectiveness, inevitable emergence of acquired resistance remains a critical challenge in the treatment of advanced prostate cancer (PCa). Recognizing targetable genomic aberrations that trigger endocrine treatment failure holds great promise for advancing therapeutic interventions. Here, we characterized PLXNA1, amplified in a subset of PCa patients, as a contributor to enzalutamide resistance (ENZR).
View Article and Find Full Text PDFBackground: Gastric cancer (GC), a malignant tumor with poor prognosis, is one of the leading causes of cancer-related deaths worldwide; consequently, identifying novel therapeutic targets is crucial for its corresponding treatment. NUF2 , a component of the NDC80 kinetochore complex, promotes cancer progression in multiple malignancies. Therefore, this study aimed to explore the potential of NUF2 as a therapeutic target to inhibit GC progression.
View Article and Find Full Text PDFMaintaining cognitive integrity is crucial during underwater operations, which can significantly impact work performance and risk severe accidents. However, the cognitive effects of underwater operations and their underlying mechanism remain elusive, posing great challenges to the medical protection of professionals concerned. Here, we found that a single underwater operation session affects cognition in a time-dependent model.
View Article and Find Full Text PDFBackground: Endocrine resistance driven by sustained activation of androgen receptor (AR) signaling pathway in advanced prostate cancer (PCa) is fatal. Characterization of mechanisms underlying aberrant AR pathway activation to search for potential therapeutic strategy is particularly important. Rac GTPase-activating protein 1 (RACGAP1) is one of the specific GTPase-activating proteins.
View Article and Find Full Text PDFUnderwater exercise is becoming increasingly prevalent, during which brain function is necessary but is also at risk. However, no study has explored how prolonged exercise affect the brain in underwater environment. Previous studies have indicated that excessive exercise in common environment causes brain dysfunction but have failed to provide appropriate interventions.
View Article and Find Full Text PDFWhile BRAF alterations have been established as a driver in various solid malignancies, the characterization of BRAF alterations in prostate cancer (PCa) has not been thoroughly interrogated. By bioinformatics analysis, we first found that BRAF alterations were associated with advanced PCa and exhibited mutually exclusive pattern with ERG alteration across multiple cohorts. Of the most interest, recurrent non-V600 BRAF mutations were found in 3 of 21 (14.
View Article and Find Full Text PDFRecent Pat Anticancer Drug Discov
February 2025
Digestive system neoplasms are highly heterogeneous and exhibit complex resistance mechanisms that render anti-programmed cell death protein (PD) therapies poorly effective. The tumor microenvironment (TME) plays a pivotal role in tumor development, apart from supplying energy for tumor proliferation and impeding the body's anti-tumor immune response, the TME actively facilitates tumor progression and immune escape via diverse pathways, which include the modulation of heritable gene expression alterations and the intricate interplay with the gut microbiota. In this review, we aim to elucidate the mechanisms underlying drug resistance in digestive tumors, focusing on immune-mediated resistance, microbial crosstalk, metabolism, and epigenetics.
View Article and Find Full Text PDFCurr Cancer Drug Targets
August 2024
Tumors of the digestive system are currently one of the leading causes of cancer-related death worldwide. Despite considerable progress in tumor immunotherapy, the prognosis for most patients remains poor. In the tumor microenvironment (TME), tumor cells attain immune escape through immune editing and acquire immune tolerance.
View Article and Find Full Text PDFUnlabelled: The chemotherapeutic agent 5-fluorouracil (5-FU) remains the backbone of postoperative adjuvant treatment for gastric cancer. However, fewer than half of patients with gastric cancer benefit from 5-FU-based chemotherapies owing to chemoresistance and limited clinical biomarkers. Here, we identified the SNF2 protein Polo-like kinase 1-interacting checkpoint helicase (PICH) as a predictor of 5-FU chemosensitivity and characterized a transcriptional function of PICH distinct from its role in chromosome separation.
View Article and Find Full Text PDFIntroduction: Integrating the Internet and traditional teaching has enriched teaching resources and methods and introduced many advanced digital media. The smart teaching process is influenced by teachers' psychological adaptability, which can be affected by teachers' work engagement. However, the relationship between the two has not received sufficient attention in the literature.
View Article and Find Full Text PDFBackground & Aims: Although small patient subsets benefit from current targeted strategies or immunotherapy, gemcitabine remains the first-line drug for pancreatic cancer (PC) treatment. However, gemcitabine resistance is widespread and compromises long-term survival. Here, we identified ubiquitin-conjugating enzyme E2T (UBE2T) as a potential therapeutic target to combat gemcitabine resistance in PC.
View Article and Find Full Text PDFUbiquitin binding enzyme E2S (UBE2S) is a member of ubiquitin binding enzyme family involved in a variety of biological functions, including cell cycle regulation, apoptosis, and regulation of the ubiquitination of proteins, which are closely correlated with the development of various tumors. However, its role in gastric cancer (GC) remains unknown. In this study, we found that UBE2S was upregulated in GC tissues and cells.
View Article and Find Full Text PDFCurr Cancer Drug Targets
March 2023
Background: Novel therapeutic strategies are urgently required to improve clinical outcomes of gastric cancer (GC). KIF15 cooperates with KIF11 to promote bipolar spindle assembly and formation, which is essential for proper sister chromatid segregation. Therefore, we speculated that the combined inhibition of KIF11 and KIF15 might be an effective strategy for GC treatment.
View Article and Find Full Text PDF