Publications by authors named "Zeyuan Song"

Background: Recent studies have revealed a strong association between the e2 allele of the Apolipoprotein E ( gene and lipid metabolites. In addition, carriers appear to be protected from cognitive decline and Alzheimer's disease. This correlation supports the hypothesis that lipids may mediate the protective effect of on cognitive function, thereby providing potential targets for therapeutic intervention.

View Article and Find Full Text PDF

Using whole-genome sequencing (WGS) might offer insights into rare genetic variants associated with healthy aging and extreme longevity (EL), potentially pointing to useful therapeutic targets. In this study, we conducted a genome-wide association study using WGS data from the Long Life Family Study and identified a novel longevity-associated variant rs6543176 in the SLC9A2 gene. This SNP also showed a significant association with reduced hypertension risk and an increased, though not statistically significant, cancer risk.

View Article and Find Full Text PDF

Epidural fibrosis post laminectomy is the leading cause of failed back surgery syndrome. Little is known about the role and mechanisms of adipose tissues in epidural fibrosis. Here, we found that obese patients were more likely to develop epidural fibrosis after spine surgery.

View Article and Find Full Text PDF

Low back pain after spine surgery is a major complication due to excessive epidural fibrosis, which compresses the lumbar nerve. Macrophage-myofibroblast transition (MMT) promoted epidural fibrosis in a mouse laminectomy model. Previously, we demonstrated that LincR-PPP2R5C regulated CD4 + T-cell differentiation.

View Article and Find Full Text PDF

Metabolites that mark aging are not fully known. We analyze 408 plasma metabolites in Long Life Family Study participants to characterize markers of age, aging, extreme longevity, and mortality. We identify 308 metabolites associated with age, 258 metabolites that change over time, 230 metabolites associated with extreme longevity, and 152 metabolites associated with mortality risk.

View Article and Find Full Text PDF

Vascular endothelial growth factor receptor inhibitors (VEGFRis) improve cancer survival but are associated with treatment-limiting hypertension, often attributed to endothelial cell (EC) dysfunction. Using phosphoproteomic profiling of VEGFRi-treated ECs, drugs were screened for mitigators of VEGFRi-induced EC dysfunction and validated in primary aortic ECs, mice, and canine cancer patients. VEGFRi treatment significantly raised systolic blood pressure (SBP) and increased markers of endothelial and renal dysfunction in mice and canine cancer patients.

View Article and Find Full Text PDF

Epidural fibrosis is a primary contributor to the failure of laminectomy surgeries, leading to the development of failed back surgery syndrome (FBSS). Post-laminectomy, neutrophils infiltrate the surgical site, generating neutrophil extracellular traps (NETs) that contribute to epidural fibrosis. Reactive oxygen species (ROS) play a pivotal role in mediating NETs formation.

View Article and Find Full Text PDF

Low back pain due to epidural fibrosis is a major complication after spine surgery. Macrophages infiltrate the wound area post laminectomy, but the role of macrophages in epidural fibrosis remains largely elusive. In a mouse model of laminectomy, macrophage depletion decreased epidural fibrosis.

View Article and Find Full Text PDF

Quantitative trait loci (QTL) denote regions of DNA whose variation is associated with variations in quantitative traits. QTL discovery is a powerful approach to understand how changes in molecular and clinical phenotypes may be related to DNA sequence changes. However, QTL discovery analysis encompasses multiple analytical steps and the processing of multiple input files, which can be laborious, error prone, and hard to reproduce if performed manually.

View Article and Find Full Text PDF

Gaussian Graphical Models (GGM) have been widely used in biomedical research to explore complex relationships between many variables. There are well established procedures to build GGMs from a sample of independent and identical distributed observations. However, many studies include clustered and longitudinal data that result in correlated observations and ignoring this correlation among observations can lead to inflated Type I error.

View Article and Find Full Text PDF

Nanofluidic membranes offer exceptional promise for osmotic energy conversion, but the challenge of balancing ionic selectivity and permeability persists. Here, we present a bionic nanofluidic system based on two-dimensional (2D) copper tetra-(4-carboxyphenyl) porphyrin framework (Cu-TCPP). The inherent nanoporous structure and horizontal interlayer channels endow the Cu-TCPP membrane with ultrahigh ion permeability and allow for a power density of 16.

View Article and Find Full Text PDF

Quantitative trait loci (QTL) denote regions of DNA whose variation is associated with variations in quantitative traits. QTL discovery is a powerful approach to understand how changes in molecular and clinical phenotypes may be related to DNA sequence changes. However, QTL discovery analysis encompasses multiple analytical steps and the processing of multiple input files, which can be laborious, error prone, and hard to reproduce if performed manually.

View Article and Find Full Text PDF

Nanochannel membranes have demonstrated remarkable potential for osmotic energy harvesting; however, their efficiency in practical high-salinity systems is hindered by reduced ion selectivity. Here, we propose a dual-separation transport strategy by constructing a two-dimensional (2D) vermiculite (VMT)-based heterogeneous nanofluidic system via an eco-friendly and scalable method. The cations are initially separated and enriched in micropores of substrates during the transmembrane diffusion, followed by secondary precise sieving in ultra-thin VMT laminates with high ion flux.

View Article and Find Full Text PDF

Mosaic chromosomal alterations (mCAs) are structural alterations associated with aging, cancer, cardiovascular disease, infectious diseases, and mortality. The distribution of mCAs in centenarians and individuals with familial longevity is poorly understood. We used MOsaic CHromosomal Alteration (MoChA) to discover mCAs in 2050 centenarians, offspring, and 248 controls from the New England Centenarian Study (NECS) and in 3 642 subjects with familial longevity and 920 spousal controls from the Long-Life Family Study (LLFS).

View Article and Find Full Text PDF

We conducted a genome-wide association study of Digit Symbol Substitution Test scores administered in 4207 family members of the Long Life Family Study (LLFS). Genotype data were imputed to the HRC panel of 64,940 haplotypes resulting in ∼15M genetic variants with a quality score > 0.7.

View Article and Find Full Text PDF

We performed a genome-wide association study (GWAS) of human extreme longevity (EL), defined as surviving past the 99th survival percentile, by aggregating data from four centenarian studies. The combined data included 2304 EL cases and 5879 controls. The analysis identified a locus in CDKN2B-AS1 (rs6475609, = 7.

View Article and Find Full Text PDF

Performing a genome-wide association study (GWAS) with a binary phenotype using family data is a challenging task. Using linear mixed effects models is typically unsuitable for binary traits, and numerical approximations of the likelihood function may not work well with rare genetic variants with small counts. Additionally, imbalance in the case-control ratios poses challenges as traditional statistical methods such as the Score test or Wald test perform poorly in this setting.

View Article and Find Full Text PDF

With the goal of identifying metabolites that significantly correlate with the protective e2 allele of the apolipoprotein E (APOE) gene, we established a consortium of five studies of healthy aging and extreme human longevity with 3545 participants. This consortium includes the New England Centenarian Study, the Baltimore Longitudinal Study of Aging, the Arivale study, the Longevity Genes Project/LonGenity studies, and the Long Life Family Study. We analyzed the association between APOE genotype groups E2 (e2e2 and e2e3 genotypes, N = 544), E3 (e3e3 genotypes, N = 2299), and E4 (e3e4 and e4e4 genotypes, N = 702) with metabolite profiles in the five studies and used fixed effect meta-analysis to aggregate the results.

View Article and Find Full Text PDF

A surprising and well-replicated result in genetic studies of human longevity is that centenarians appear to carry disease-associated variants in numbers similar to the general population. With the proliferation of large genome-wide association studies (GWAS) in recent years, investigators have turned to polygenic scores to leverage GWAS results into a measure of genetic risk that can better predict the risk of disease than individual significant variants alone. We selected 54 polygenic risk scores (PRSs) developed for a variety of outcomes, and we calculated their values in individuals from the New England Centenarian Study (NECS, N = 4886) and the Long Life Family Study (LLFS, N = 4577).

View Article and Find Full Text PDF

A variety of techniques have been proposed for fabricating high-density, high-numerical-aperture microlens arrays. However, a microlens array with a uniform focal length has a narrow depth of field, limiting the ability of depth perception. In this paper, we report on a fabrication method of multi-focus microlens arrays.

View Article and Find Full Text PDF

We conducted a genome-wide association study of 1320 centenarians from the New England Centenarian Study (median age = 104 years) and 2899 unrelated controls using >9 M genetic variants imputed to the HRC panel of ~65,000 haplotypes. The genetic variants with the most significant associations were correlated to 4131 proteins that were profiled in the serum of a subset of 224 study participants using a SOMAscan array. The genetic associations were replicated in a genome-wide association study of 480 centenarians and ~800 controls of Ashkenazi Jewish descent.

View Article and Find Full Text PDF

Excessive post-epidural fibrosis is a common cause of recurrent back pain after spinal surgery. Though various treatment methods have been conducted, the safe and effective drug for alleviating post-epidural fibrosis remains largely unknown. Metformin, a medicine used in the treatment of type 2 diabetes, has been noted to relieve fibrosis in various organs.

View Article and Find Full Text PDF

A tool for conducting Genome-Wide Association Study (GWAS) in a systematic, automated and reproducible manner is overdue. We developed an automated GWAS pipeline by combining multiple analysis tools - including bcftools, vcftools, the R packages SNPRelate/GENESIS/GMMAT and ANNOVAR - through Nextflow, which is a portable, flexible, and reproducible reactive workflow framework for developing pipelines. The GWAS pipeline integrates the steps of data quality control and assessment and genetic association analyses, including analysis of cross-sectional and longitudinal studies with either single variants or gene-based tests, into a unified analysis workflow.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Zeyuan Song"

  • - Zeyuan Song's recent research primarily focuses on understanding and mitigating complications associated with endothelial cell dysfunction and epidural fibrosis, using advanced biological and computational methods to investigate potential interventions and mechanisms involved in these conditions.
  • - His work has demonstrated the negative impacts of vascular endothelial growth factor receptor inhibitors on blood pressure and endothelial function, while also exploring innovative treatments like hydrogen-releasing magnesium hydrogel to reduce post-surgical fibrosis, highlighting the significance of neutrophil and macrophage behavior in these pathological processes.
  • - Additionally, Song's contributions extend to computational biology, particularly through the development of the yQTL Pipeline for efficient quantitative trait loci discovery, reflecting his interdisciplinary approach to uncover genetic insights into various health conditions, alongside investigating novel nanofluidic systems for energy harvesting applications.