Methuosis, a non-apoptotic pattern of cell death, triggers the accumulation of macropinosome-derived vacuoles in the cytoplasm. Through this novel mechanism, methuosis inducers possess great potential in fighting apoptosis-resistant cancer cells and offer a promising alternative for cancer treatment. However, the potent methuosis inducer, 3-(5-methoxy, 2-methyl-1-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MOMIPP), faces an intractable issue of insolubility in most solvents, hindering dosing and compromising the validation of its antitumor efficacy.
View Article and Find Full Text PDFAirway mucus dysfunction and impaired immunological defenses are hallmarks of several lung diseases, including asthma, cystic fibrosis, and chronic obstructive pulmonary diseases, and are mostly causative factors in bacterial-biofilm-associated respiratory tract infections. Bacteria residing within the biofilm architecture pose a complex challenge in clinical settings due to their increased tolerance to currently available antibiotics and host immune responses, resulting in chronic infections with high recalcitrance and high rates of morbidity and mortality. To address these unmet clinical needs, potential anti-biofilm therapeutic strategies are being developed to effectively control bacterial biofilm.
View Article and Find Full Text PDFExpert Opin Ther Pat
September 2022
Introduction: Iron oxide nanoparticles (IONPs) hold the edges of great magnetic properties and fine nanoparticle characteristics, making them an attractive therapeutic agent. In the past seven years, more in-depth investigations were devoted to the intrinsic structure, magnetic properties, and biological effects of IONPs, expanding the range of their therapeutic application scenes.
Areas Covered: This review focuses on the development of IONPs for biomedical applications from the angle of the patent literature reported during the period 2015-2021.