Publications by authors named "Zeyu Tao"

Achieving high gas selectivity is challenging when dealing with gas pairs of similar size and physiochemical properties. The "molecular trapdoor" mechanism discovered in zeolites holds promise for highly selective gas adsorption separation but faces limitations like constrained pore volume and slow adsorption kinetics. To address these challenges, for the first time, a flexible metal-organic framework (MOF) featuring 1D channels and functioning as a "molecular trapdoor" material is intoduced.

View Article and Find Full Text PDF

GYH2-18 is a type II HBV CAM with 6,7-dihydropyrazolo[1,5-a]pyrazine-5(4H)-carboxamine (DPPC) skeleton discovered by Roche INC. A series of GYH2-18 derivatives were designed, synthesized and evaluated for their anti-HBV activity. Two compounds 2f and 3k exhibited excellent anti-HBV activity, low cytotoxicity and accepted oral PK profiles.

View Article and Find Full Text PDF

Here we developed the functionalized biochar as low-cost and heavy metal-free photocatalysts via a facile iodine doping method, which exhibit efficient adsorption and visible-light-driven photocatalytic degradation of representative organic pollutants, phenol and tetracycline. On one hand, iodine doping elevates the adsorption via creating extra pores, e.g.

View Article and Find Full Text PDF

A series of benzothiazinones (BTZs) containing an oxime moiety, based on the structure of ZR-10 discovered in our lab, were designed and synthesized. Most of the compounds with alkoxyimino groups attached to the piperazine or cyclohexyl ring of PBTZ169, exhibit excellent in vitro activity against both drug-sensitive and clinically isolated multidrug-resistant Mycobacterium tuberculosis (MTB) strains (MIC: < 0.016-0.

View Article and Find Full Text PDF

IMB1603, a new benzothiazinone lead discovered by our lab, exhibited potent anti-MTB activity in vitro and in vivo, but significant hERG binding potency (IR > 90% at 10 μM). Thus, we embarked on a lead optimization program with the goal of identifying alternative leads that could reduce the hERG liability without sacrificing antimycobacterial potency. Compounds 2c and 4c were identified to maintain the anti-MTB activity (MICs <0.

View Article and Find Full Text PDF

A series of N-(2-phenoxy)ethyl imidazo[1,2-a]pyridine-3-carboxamides (IPAs), based on the structure of WZY02 discovered in our lab, were designed and synthesized as new anti-TB agents. Results reveal that many of them exhibit excellent in vitro inhibitory activity with low nanomolar MIC values against both drug-sensitive MTB strain H37Rv and drug-resistant clinical isolates. Compounds 15b and 15d display good safety and pharmacokinetic profiles, suggesting their promising potential to be lead compounds for future antitubercular drug discovery.

View Article and Find Full Text PDF

A series of bis(l-amino acid) ester prodrugs of tenofovir (TFV) were designed and synthesized as new anti-HBV agents in this work. Four compounds , and displayed better anti-HBV activity (IC: 0.71-4.

View Article and Find Full Text PDF

We report herein the design and synthesis of a series of less lipophilic Q203 derivatives containing an alkaline fused ring moiety. Most of them show considerable potency against MTB H37Rv strain (MIC < 0.25 μM).

View Article and Find Full Text PDF

A series of reduced lipophilic N-benzylic imidazo[1,2-a]pyridine carboxamides (IPAs) with various side chains were designed and synthesized as new anti-TB agents in this work. Five derivatives A2, A3, A4, B1 and B9 exhibit excellent in vitro activity (MIC: < 0.035 μM) against the drug susceptive Mycobacterium tuberculosis H37Rv strain and two clinically isolated multidrug-resistant strains, and acceptable PK properties.

View Article and Find Full Text PDF

We report herein the design and synthesis of a series of novel Sinefungin (SIN) derivatives, based on the structures of SIN and its analogue EPZ004777. Our results reveal that target compounds 1ad-af, 1ba-bb and 1bf-bh show better activity (IC = 4.56-20.

View Article and Find Full Text PDF

A series of benzamide scaffolds were designed and synthesized by the thiazinone ring opening of PBTZ169, and -benzyl 3,5-dinitrobenzamides were finally identified as anti-TB agents in this work. 3,5-Dinitrobenzamides , , , and exhibit excellent activity against the drug susceptive H37Rv strain (MIC: 0.0625 μg/mL) and two clinically isolated multidrug-resistant strains (MIC < 0.

View Article and Find Full Text PDF

We report herein the design, synthesis and antimycobacterial activity of 3,5-dinitrobenzamide derivatives containing fused ring moieties. Results reveal that many of the target compounds have considerable in vitro antitubercular activity. Especially, N-((2-(4-fluorophenyl)/N-((2-(3-fluorobenzyl)-1,2,3,4-tetrahydroisoquilin-6-yl)methyl)-3,5-dinitrobenzamides 18a and 20e exhibit potent MIC values of 0.

View Article and Find Full Text PDF

We herein report the design and synthesis of benzothiazinones containing a piperidine moiety as new antitubercular agents based on the structure feature of IMB-ZR-1 discovered in our lab. Some of them were found to have good in vitro activity (MIC < 1 μg/mL) against drug-susceptible Mycobacterium tuberculosis H37RV strain. After two set of modifications, compound 2i were found to display comparable in vitro anti-TB activity (MIC < 0.

View Article and Find Full Text PDF