Publications by authors named "Zeyu Lan"

Solid-phase denitrification (SPD) is a promising technology for nitrate-rich water purification. This study aimed to examine the variation in denitrification performance and denitrifying community under high-dose acute oxytetracycline (OTC) exposure and various biorecovery strategies. The denitrification performance was impaired significantly after one-day OTC shock at 50 mg L in a continuous-flow SPD system supported by a polycaprolactone (PCL) carrier but could rapidly recover without the addition of OTC.

View Article and Find Full Text PDF

Biodegradable carrier are vital for the solid-phase denitrification (SPD) systems for treating nitrate-rich water. Two solid-phase denitrification reactors were developed with both 200 g L of single (polycaprolactone, PCL) (R1) and hybrid solid carbon sources (PCL/polylactic acid (PLA) /polyhydroxyalkanoates (PHA)) (R2) to examine the denitrification performance, denitrifying community and functional genes to various oxytetracycline (OTC) exposure in this study, respectively. Complete denitrification performance was achieved in the both SPD systems at low stress of OTC (1 mg L), but then dramatically reduced to less than 20% of nitrate reduction efficiency after one-month high OTC stress (10 mg L), and rapidly recovered to stable nitrate removal rates of 76.

View Article and Find Full Text PDF

The coexistence of nitrate and antibiotics in wastewater is a common problem. The study aimed to explore the response of denitrifying community, denitrification genes and antibiotic resistance genes (ARGs) to oxytetracycline (OTC) stress in polycaprolactone (PCL) supported solid-phase denitrification (SPD) reactors. Complete nitrate reduction (greater than99%) was achieved in SPD system with OTC stress of 0, 0.

View Article and Find Full Text PDF