Thyroid Ultrasound (US) is the primary method to evaluate thyroid nodules. Deep learning (DL) has been playing a significant role in evaluating thyroid cancer. We propose a DL-based pipeline to detect and classify thyroid nodules into benign or malignant groups relying on two views of US imaging.
View Article and Find Full Text PDFTransplant pathology plays a critical role in ensuring that transplanted organs function properly and the immune systems of the recipients do not reject them. To improve outcomes for transplant recipients, accurate diagnosis and timely treatment are essential. Recent advances in artificial intelligence (AI)-empowered digital pathology could help monitor allograft rejection and weaning of immunosuppressive drugs.
View Article and Find Full Text PDFMicroscopic image examination is fundamental to clinical microbiology and often used as the first step to diagnose fungal infections. In this study, we present classification of pathogenic fungi from microscopic images using deep convolutional neural networks (CNN). We trained well-known CNN architectures such as DenseNet, Inception ResNet, InceptionV3, Xception, ResNet50, VGG16, and VGG19 to identify fungal species, and compared their performances.
View Article and Find Full Text PDFMedian nerve swelling is one of the features of carpal tunnel syndrome (CTS), and ultrasound measurement of maximum median nerve cross-sectional area is commonly used to diagnose CTS. We hypothesized that volume might be a more sensitive measure than cross-sectional area for CTS diagnosis. We therefore assessed the accuracy and reliability of 3-D volume measurements of the median nerve in human cadavers, comparing direct measurements with ultrasound images interpreted using deep learning algorithms.
View Article and Find Full Text PDFPurpose: Total kidney volume (TKV) is the most important imaging biomarker for quantifying the severity of autosomal-dominant polycystic kidney disease (ADPKD). 3D ultrasound (US) can accurately measure kidney volume compared to 2D US; however, manual segmentation is tedious and requires expert annotators. We investigated a deep learning-based approach for automated segmentation of TKV from 3D US in ADPKD patients.
View Article and Find Full Text PDFIntroduction: The management of follicular (FN) and Hurthle cell neoplasms (HCN) is often difficult because of the uncertainty of malignancy risk. We aimed to assess characteristics of benign and malignant follicular and Hurthle neoplasms based on their shape and size.
Materials And Methods: Patients with Follicular adenoma (FA) or carcinoma (FC) and Hurthle Cell adenoma (HCA) or carcinoma (HCC) who had preoperative ultrasonography were included.
The accurate diagnosis of chronic myelomonocytic leukemia (CMML) and acute myeloid leukemia (AML) subtypes with monocytic differentiation relies on the proper identification and quantitation of blast cells and blast-equivalent cells, including promonocytes. This distinction can be quite challenging given the cytomorphologic and immunophenotypic similarities among the monocytic cell precursors. The aim of this study was to assess the performance of convolutional neural networks (CNN) in separating monocytes from their precursors (i.
View Article and Find Full Text PDFRadiol Artif Intell
September 2020
Purpose: To develop a deep learning model that segments intracranial structures on head CT scans.
Materials And Methods: In this retrospective study, a primary dataset containing 62 normal noncontrast head CT scans from 62 patients (mean age, 73 years; age range, 27-95 years) acquired between August and December 2018 was used for model development. Eleven intracranial structures were manually annotated on the axial oblique series.
Echocardiography (Echo), a widely available, noninvasive, and portable bedside imaging tool, is the most frequently used imaging modality in assessing cardiac anatomy and function in clinical practice. On the other hand, its operator dependability introduces variability in image acquisition, measurements, and interpretation. To reduce these variabilities, there is an increasing demand for an operator- and interpreter-independent Echo system empowered with artificial intelligence (AI), which has been incorporated into diverse areas of clinical medicine.
View Article and Find Full Text PDFAdvances in digital pathology have allowed a number of opportunities such as decision support using artificial intelligence (AI). The application of AI to digital pathology data shows promise as an aid for pathologists in the diagnosis of haematological disorders. AI-based applications have embraced benign haematology, diagnosing leukaemia and lymphoma, as well as ancillary testing modalities including flow cytometry.
View Article and Find Full Text PDFUltrasound measurements of detrusor muscle thickness have been proposed as a diagnostic biomarker in patients with bladder overactivity and voiding dysfunction. In this study, we present an approach based on deep learning (DL) and dynamic programming (DP) to segment the bladder sac and measure the detrusor muscle thickness from transabdominal 2D B-mode ultrasound images. To assess the performance of our method, we compared the results of automated methods to the manually obtained reference bladder segmentations and wall thickness measurements of 80 images obtained from 11 volunteers.
View Article and Find Full Text PDFBackground: Screening and early diagnosis of mitral regurgitation (MR) are crucial for preventing irreversible progression of MR. In this study, we developed and validated an artificial intelligence (AI) algorithm for detecting MR using electrocardiography (ECG).
Methods: This retrospective cohort study included data from two hospital.
Ultrasound is the most commonly used imaging modality in clinical practice because it is a nonionizing, low-cost, and portable point-of-care imaging tool that provides real-time images. Artificial intelligence (AI)-powered ultrasound is becoming more mature and getting closer to routine clinical applications in recent times because of an increased need for efficient and objective acquisition and evaluation of ultrasound images. Because ultrasound images involve operator-, patient-, and scanner-dependent variations, the adaptation of classical machine learning methods to clinical applications becomes challenging.
View Article and Find Full Text PDFDeep-learning algorithms typically fall within the domain of supervised artificial intelligence and are designed to "learn" from annotated data. Deep-learning models require large, diverse training datasets for optimal model convergence. The effort to curate these datasets is widely regarded as a barrier to the development of deep-learning systems.
View Article and Find Full Text PDFObjective: Deep learning has shown great promise for improving medical image classification tasks. However, knowing what aspects of an image the deep learning system uses or, in a manner of speaking, sees to make its prediction is difficult.
Materials And Methods: Within a radiologic imaging context, we investigated the utility of methods designed to identify features within images on which deep learning activates.
Deep learning (DL) is a popular method that is used to perform many important tasks in radiology and medical imaging. Some forms of DL are able to accurately segment organs (essentially, trace the boundaries, enabling volume measurements or calculation of other properties). Other DL networks are able to predict important properties from regions of an image-for instance, whether something is malignant, molecular markers for tissue in a region, even prognostic markers.
View Article and Find Full Text PDFSchizophrenia has been proposed to result from impairment of functional connectivity. We aimed to use machine learning to distinguish schizophrenic subjects from normal controls using a publicly available functional MRI (fMRI) data set. Global and local parameters of functional connectivity were extracted for classification.
View Article and Find Full Text PDFSeveral studies have linked codeletion of chromosome arms 1p/19q in low-grade gliomas (LGG) with positive response to treatment and longer progression-free survival. Hence, predicting 1p/19q status is crucial for effective treatment planning of LGG. In this study, we predict the 1p/19q status from MR images using convolutional neural networks (CNN), which could be a non-invasive alternative to surgical biopsy and histopathological analysis.
View Article and Find Full Text PDFQuantitative analysis of brain MRI is routine for many neurological diseases and conditions and relies on accurate segmentation of structures of interest. Deep learning-based segmentation approaches for brain MRI are gaining interest due to their self-learning and generalization ability over large amounts of data. As the deep learning architectures are becoming more mature, they gradually outperform previous state-of-the-art classical machine learning algorithms.
View Article and Find Full Text PDFDeep learning is an important new area of machine learning which encompasses a wide range of neural network architectures designed to complete various tasks. In the medical imaging domain, example tasks include organ segmentation, lesion detection, and tumor classification. The most popular network architecture for deep learning for images is the convolutional neural network (CNN).
View Article and Find Full Text PDFMachine learning is a technique for recognizing patterns that can be applied to medical images. Although it is a powerful tool that can help in rendering medical diagnoses, it can be misapplied. Machine learning typically begins with the machine learning algorithm system computing the image features that are believed to be of importance in making the prediction or diagnosis of interest.
View Article and Find Full Text PDFTissue stiffness is often linked to underlying pathology and can be quantified by measuring the mechanical transient transverse wave speed (TWS) within the medium. Time-of-flight methods based on correlation of the transient signals or tracking of peaks have been used to quantify the TWS from displacement maps obtained with ultrasound pulse-echo techniques. However, it is challenging to apply these methods to in vivo data because of tissue inhomogeneity, noise and artifacts that produce outliers.
View Article and Find Full Text PDFAJR Am J Roentgenol
September 2016
Objective: The objective of the present study is to develop and validate a fast, accurate, and reproducible method that will increase and improve institutional measurement of total kidney volume and thereby avoid the higher costs, increased operator processing time, and inherent subjectivity associated with manual contour tracing.
Materials And Methods: We developed a semiautomated segmentation approach, known as the minimal interaction rapid organ segmentation (MIROS) method, which results in human interaction during measurement of total kidney volume on MR images being reduced to a few minutes. This software tool automatically steps through slices and requires rough definition of kidney boundaries supplied by the user.
Background: Segmentation of pre-operative low-grade gliomas (LGGs) from magnetic resonance imaging is a crucial step for studying imaging biomarkers. However, segmentation of LGGs is particularly challenging because they rarely enhance after gadolinium administration. Like other gliomas, they have irregular tumor shape, heterogeneous composition, ill-defined tumor boundaries, and limited number of image types.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
June 2015
Molecular markers associated with diseases can be visualized and quantified noninvasively with targeted ultrasound contrast agent (t-UCA) consisting of microbubbles (MBs) that can bind to specific molecular targets. Techniques used for quantifying t-UCA assume that all unbound MBs are taken out of the blood pool few minutes after injection and only MBs bound to the molecular markers remain. However, differences in physiology, diseases, and experimental conditions can increase the longevity of unbound MBs.
View Article and Find Full Text PDF