Publications by authors named "Zeynep M Saygin"

The visual word form area (VWFA) is a region in the left ventrotemporal cortex (VTC) whose specificity remains contentious. Using precision fMRI, we examine the VWFA's responses to numerous visual and nonvisual stimuli, comparing them to adjacent category-selective visual regions and regions involved in language and attentional demand. We find that VWFA responds moderately to non-word visual stimuli, but is unique within VTC in its pronounced selectivity for visual words.

View Article and Find Full Text PDF

The ventral visual stream is organized into units, or functional regions of interest (fROIs), specialized for processing high-level visual categories. Task-based fMRI scans ("localizers") are typically used to identify each individual's nuanced set of fROIs. The unique landscape of an individual's functional activation may rely in large part on their specialized connectivity patterns; recent studies corroborate this by showing that connectivity can predict individual differences in neural responses.

View Article and Find Full Text PDF

Misophonia, a heightened aversion to certain sounds, turns common cognitive and social exercises (e.g., paying attention during a lecture near a pen-clicking classmate, coexisting at the dinner table with a food-chomping relative) into challenging endeavors.

View Article and Find Full Text PDF

Extremely preterm (EPT) birth, defined as birth at a gestational age (GA) <28 weeks, can have a lasting impact on cognition throughout the life span. Previous investigations reveal differences in brain structure and connectivity between infants born preterm and full-term (FT), but how does preterm birth impact the adolescent connectome? In this study, we investigate how EPT birth can alter broadscale network organization later in life by comparing resting-state functional magnetic resonance imaging connectome-based parcellations of the entire cortex in adolescents born EPT ( = 22) to age-matched adolescents born FT (GA ≥37 weeks,  = 28). We compare these parcellations to adult parcellations from previous studies and explore the relationship between an individual's network organization and behavior.

View Article and Find Full Text PDF

Executive function (EF) is essential for humans to effectively engage in cognitively demanding tasks. In adults, EF is subserved by frontoparietal regions in the multiple demand (MD) network, which respond to various cognitively demanding tasks. However, children initially show poor EF and prolonged development.

View Article and Find Full Text PDF

Misophonia, an extreme aversion to certain environmental sounds, is a highly prevalent yet understudied condition plaguing roughly 20% of the general population. Although neuroimaging research on misophonia is scant, recent work showing higher resting-state functional connectivity (rs-fMRI) between auditory cortex and orofacial motor cortex in misophonia vs. controls has led researchers to speculate that misophonia is caused by orofacial mirror neurons.

View Article and Find Full Text PDF

The adult brain is organized into distinct functional networks, forming the basis of information processing and determining individual differences in behavior. Is this network organization genetically determined and present at birth? And what is the individual variability in this organization in neonates? Here, we use unsupervised learning to uncover intrinsic functional brain organization using resting-state connectivity from a large cohort of neonates (Developing Human Connectome Project). We identified a set of symmetric, hierarchical, and replicable networks: sensorimotor, visual, default mode, ventral attention, and high-level vision.

View Article and Find Full Text PDF

Refractory focal epilepsy (rFE) is commonly comorbid with impaired social functioning, which significantly reduces quality of life. Previous research has identified a mentalizing network in the brain-composed of the anterior temporal cortex, medial prefrontal cortex (mPFC), posterior temporal sulcus (pSTS), and temporoparietal junction-that is thought to play a critical role in social cognition. In typically-developing (TD) youth, this network undergoes a protracted developmental process with cortical thinning and white matter expansion occurring across adolescence.

View Article and Find Full Text PDF

Objectives: Misophonia is a highly prevalent yet understudied condition characterized by aversion toward particular environmental sounds. Oral/nasal sounds (e.g.

View Article and Find Full Text PDF

What determines the functional organization of cortex? One hypothesis is that innate connectivity patterns, either structural or functional connectivity, set up a scaffold upon which functional specialization can later take place. We tested this hypothesis by asking whether the visual word form area (VWFA), an experience-driven region, was already functionally connected to proto language networks in neonates scanned within one week of birth. Using the data from the Human Connectone Project (HCP) and the Developing Human Connectome Project (dHCP), we calculated intrinsic functional connectivity during resting-state functional magnetic resonance imaging (fMRI), and found that neonates showed similar functional connectivity patterns to adults.

View Article and Find Full Text PDF

The amygdala, a subcortical structure known for social and emotional processing, consists of multiple subnuclei with unique functions and connectivity patterns. Tracer studies in adult macaques have shown that the basolateral subnuclei differentially connect to parts of visual cortex, with stronger connections to anterior regions and weaker connections to posterior regions; infant macaques show robust connectivity even with posterior visual regions. Do these developmental differences also exist in the human amygdala, and are there specific functional regions that undergo the most pronounced developmental changes in their connections with the amygdala? To address these questions, we explored the functional connectivity (from resting-state fMRI data) of the basolateral amygdala to occipitotemporal cortex in human neonates scanned within one week of life and compared the connectivity patterns to those observed in young adults.

View Article and Find Full Text PDF

Many adults cannot voluntarily recall memories before the ages of 3-5, a phenomenon referred to as "infantile amnesia." The development of the hippocampal network likely plays a significant part in the emergence of the ability to form long-lasting memories. In adults, the hippocampus has specialized and privileged connections with certain cortical networks, which presumably facilitate its involvement in memory encoding, consolidation, and retrieval.

View Article and Find Full Text PDF

Neuroscientists have long debated whether some regions of the human brain are exclusively engaged in a single specific mental process. Consistent with this view, fMRI has revealed cortical regions that respond selectively to certain stimulus classes such as faces. However, results from multivoxel pattern analyses (MVPA) challenge this view by demonstrating that category-selective regions often contain information about "nonpreferred" stimulus dimensions.

View Article and Find Full Text PDF

The aim of this study is to assess the resting-state functional connectivity (RsFc) profile of the default mode network (DMN) in transition-age males with autism spectrum disorder (ASD). Resting-state blood oxygen level-dependent functional magnetic resonance imaging data were acquired from adolescent and young adult males with high-functioning ASD (n = 15) and from age-, sex-, and intelligence quotient-matched healthy controls (HCs; n = 16). The DMN was examined by assessing the positive and negative RsFc correlations of an average of the literature-based conceptualized major DMN nodes (medial prefrontal cortex [mPFC], posterior cingulate cortex, bilateral angular, and inferior temporal gyrus regions).

View Article and Find Full Text PDF

Depression is among the most common neuropsychiatric disorders. It remains unclear whether brain abnormalities associated with depression reflect the pathological state of the disease or neurobiological traits predisposing individuals to depression. Parental history of depression is a risk factor that more than triples the risk of depression.

View Article and Find Full Text PDF

What determines the cortical location at which a given functionally specific region will arise in development? We tested the hypothesis that functionally specific regions develop in their characteristic locations because of pre-existing differences in the extrinsic connectivity of that region to the rest of the brain. We exploited the visual word form area (VWFA) as a test case, scanning children with diffusion and functional imaging at age 5, before they learned to read, and at age 8, after they learned to read. We found the VWFA developed functionally in this interval and that its location in a particular child at age 8 could be predicted from that child's connectivity fingerprints (but not functional responses) at age 5.

View Article and Find Full Text PDF
Article Synopsis
  • The study compared the functional connectivity of the reward system in people with social anxiety disorder (SAD) and healthy controls using resting-state fMRI scans.
  • Patients with SAD showed decreased connectivity between key reward-related areas (nucleus accumbens and ventromedial prefrontal cortex) and other regions related to reward processing compared to controls.
  • Additionally, there was increased connectivity between reward regions and more posterior areas of the brain, suggesting that social anxiety disorder is linked to significant alterations in how the brain's reward system functions.
View Article and Find Full Text PDF

A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied.

View Article and Find Full Text PDF

A fundamental and largely unanswered question in neuroscience is whether extrinsic connectivity and function are closely related at a fine spatial grain across the human brain. Using a novel approach, we found that the anatomical connectivity of individual gray-matter voxels (determined via diffusion-weighted imaging) alone can predict functional magnetic resonance imaging (fMRI) responses to 4 visual categories (faces, objects, scenes, and bodies) in individual subjects, thus accounting for both functional differentiation across the cortex and individual variation therein. Furthermore, this approach identified the particular anatomical links between voxels that most strongly predict, and therefore plausibly define, the neural networks underlying specific functions.

View Article and Find Full Text PDF

Developmental dyslexia, an unexplained difficulty in learning to read, has been associated with alterations in white matter organization as measured by diffusion-weighted imaging. It is unknown, however, whether these differences in structural connectivity are related to the cause of dyslexia or if they are consequences of reading difficulty (e.g.

View Article and Find Full Text PDF

Context: Current behavioral measures poorly predict treatment outcome in social anxiety disorder (SAD). To our knowledge, this is the first study to examine neuroimaging-based treatment prediction in SAD.

Objective: To measure brain activation in patients with SAD as a biomarker to predict subsequent response to cognitive behavioral therapy (CBT).

View Article and Find Full Text PDF

A fundamental assumption in neuroscience is that brain structure determines function. Accordingly, functionally distinct regions of cortex should be structurally distinct in their connections to other areas. We tested this hypothesis in relation to face selectivity in the fusiform gyrus.

View Article and Find Full Text PDF

The amygdala plays an important role in emotional and social functions, and amygdala dysfunction has been associated with multiple neuropsychiatric disorders, including autism, anxiety, and depression. Although the amygdala is composed of multiple anatomically and functionally distinct nuclei, typical structural magnetic resonance imaging (MRI) sequences are unable to discern them. Thus, functional MRI (fMRI) studies typically average the BOLD response over the entire structure, which reveals some aspects of amygdala function as a whole but does not distinguish the separate roles of specific nuclei in humans.

View Article and Find Full Text PDF