The sit-to-stand (STS) movement is fundamental in daily activities, involving coordinated motion of the lower extremities and trunk, which leads to the generation of joint moments based on joint angles and limb properties. Traditional methods for determining joint moments often involve sensors or complex mathematical approaches, posing limitations in terms of movement restrictions or expertise requirements. Machine learning (ML) algorithms have emerged as promising tools for joint moment estimation, but the challenge lies in efficiently selecting relevant features from diverse datasets, especially in clinical research settings.
View Article and Find Full Text PDFClassifying retinal diseases is a complex problem because the early problematic areas of retinal disorders are quite small and conservative. In recent years, Transformer architectures have been successfully applied to solve various retinal related health problems. Age-related macular degeneration (AMD) and diabetic macular edema (DME), two prevalent retinal diseases, can cause partial or total blindness.
View Article and Find Full Text PDFThis study aims to use a machine learning (ML)-based enhanced diagnosis and survival model to predict heart disease and survival in heart failure by combining the cuckoo search (CS), flower pollination algorithm (FPA), whale optimization algorithm (WOA), and Harris hawks optimization (HHO) algorithms, which are meta-heuristic feature selection algorithms. To achieve this, experiments are conducted on the Cleveland heart disease dataset and the heart failure dataset collected from the Faisalabad Institute of Cardiology published at UCI. CS, FPA, WOA, and HHO algorithms for feature selection are applied for different population sizes and are realized based on the best fitness values.
View Article and Find Full Text PDF