Publications by authors named "Zeynep Cetecioglu"

This study investigated the efficiency of the treatment processes of wastewater treatment plants (WWTPs) to remove severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and pepper mild mottle virus (PMMoV) from the wastewater and sewage sludge, as well as the influence of the mode of operation on the quality of the treated wastewater. SARS-CoV-2 and PMMoV were detected and quantified at different stages of the wastewater and sludge treatment process of three major WWTPs in Stockholm, Sweden. The results showed that primary, biological, and advanced membrane treatment processes are effective in removing SARS-CoV-2 from the wastewater with removal efficiencies of 99-100 % for all WWTPs, while the virus was accumulated in the primary and waste-activated sludges due to higher affinity to biosolids.

View Article and Find Full Text PDF

Human adenovirus (HAdV) type F41 has been identified as a possible cause of the non-A-to-E hepatitis outbreak. This study uses wastewater monitoring to track HAdV F40 and F41, supporting clinical investigations and providing insights into the pathogen's role in the outbreak. Given the limited clinical monitoring in Sweden of HAdV-F40/41, this approach also helps estimate the true infection burden of this pathogen during the outbreak.

View Article and Find Full Text PDF

Global usage of pharmaceuticals has led to the proliferation of bacteria that are resistant to antimicrobial treatments, creating a substantial public health challenge. Here, we investigate the emergence of sulfonamide resistance genes in groundwater and surface water in Patna, a rapidly developing city in Bihar, India. We report the first quantification of three sulfonamide resistance genes (sulI, sulII and sulIII) in groundwater (12-107 m in depth) in India.

View Article and Find Full Text PDF

This study examined the anaerobic release of phosphorus (P) from two different Baltic Sea sediments (B and F), focusing on the impact of initial concentration of externally introduced waste-derived volatile fatty acids (VFA) as the carbon source, temperature, pH, and mixing conditions. The first batch bioreactor set was operated to demonstrate the effect of VFA on anaerobic P release at different concentrations (1000-10000 mg/L as COD) at 20 °C. A notable P release of up to 15.

View Article and Find Full Text PDF

To investigate the possibility of phosphorus (P) recovery from marine sediment and explore the role of the carbon: nitrogen ratio in affecting the internal P release under anaerobic conditions, we experimented with the external addition of carbon (acetic acid and glucose) and ammonia nitrogen (NH-N) to expose P release mechanisms. The 24-day anaerobic incubations were conducted with four different carbon: nitrogen dosing groups including no NH-N addition and COD/N ratios of 100, 50, and 10. The P release showed that extra NH-N loading significantly suppressed the decomposition of P (p < 0.

View Article and Find Full Text PDF

Developing novel strategies to enhance volatile fatty acid (VFA) yield from abundant waste resources is imperative to improve the competitiveness of biobased VFAs over petrochemical-based VFAs. This study hypothesized to improve the VFA yield from food waste via three strategies, viz., pH adjustment (5 and 10), supplementation of selenium (Se) oxyanions, and heat treatment of the inoculum (at 85 °C for 1 h).

View Article and Find Full Text PDF

Shifting the concept of municipal wastewater treatment to recover resources is one of the key factors contributing to a sustainable society. A novel concept based on research is proposed to recover four main bio-based products from municipal wastewater while reaching the necessary regulatory standards. The main resource recovery units of the proposed system include upflow anaerobic sludge blanket reactor for the recovery of biogas (as product 1) from mainstream municipal wastewater after primary sedimentation.

View Article and Find Full Text PDF

An approach based on wastewater epidemiology can be used to monitor the COVID-19 pandemic by assessing the gene copy number of SARS-CoV-2 in wastewater. In the present study, we statistically analyzed such data from six inlets of three wastewater treatment plants, covering six regions of Stockholm, Sweden, collected over an approximate year period (week 16 of 2020 to week 22 of 2021). SARS-CoV-2 gene copy number and population-based biomarker PMMoV, as well as clinical data, such as the number of positive cases, intensive care unit numbers, and deaths, were analyzed statistically using correlations and principal component analysis (PCA).

View Article and Find Full Text PDF

Wastewater-based epidemiology (WBE) can be used to track the spread of SARS-CoV-2 in a population. This study presents the learning outcomes from over two-year long monitoring of SARS-CoV-2 in Stockholm, Sweden. The three main wastewater treatment plants in Stockholm, with a total of six inlets, were monitored from April 2020 until June 2022 (in total 600 samples).

View Article and Find Full Text PDF

We present work of our COST Action on "Understanding and exploiting the impacts of low pH on micro-organisms". First, we summarise a workshop held at the European Federation of Biotechnology meeting on Microbial Stress Responses (online in 2020) on "Industrial applications of low pH stress on microbial bio-based production", as an example of an initiative fostering links between pure and applied research. We report the outcomes of a small survey on the challenging topic of developing links between researchers working in academia and industry that show that, while people in different sectors strongly support such links, barriers remain that obstruct this process.

View Article and Find Full Text PDF

Volatile fatty acids, intermediate products of anaerobic digestion, are one of the most promising biobased products. In this study, the effects of acidic (pH 5), neutral (without pH adjustment) and alkali (pH 10) pH on production efficiency and composition of volatile fatty acids (VFAs) and bacterial community profile were analyzed. The anaerobic sequencing batch reactors were fed cheese production wastewater as substrate and inoculated by anaerobic granular seed sludge.

View Article and Find Full Text PDF

Global phosphorus reserves are under pressure of depletion in the near future due to increased consumption of primary phosphorus reservoirs and improper management of phosphorus. At the same time, a considerable portion of global marine water bodies has been suffering from eutrophication due to excessive nutrient loading. The marine environment can be considered as a valuable phosphorus source due to nutrient rich eutrophic seawater and sediment which could potentially serve as phosphorus mines in the near future.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHAs), as bio-based plastics, promise a transition from petroleum products to green and sustainable alternatives. However, their commercial production is yet impeded by high production costs. In this study, we assessed synthetic culture in mono and co-culture modes for bacterial PHA production.

View Article and Find Full Text PDF

Alkaline co-fermentation of primary sludge and external organic waste (OW) was studied to elucidate the influence of substrate ratios and long-term system robustness and microbial community dynamics using batch and semi-continuous reactors. Volatile fatty acid (VFA) production increased with increasing OW fraction in the substrate due to synergistic effects of co-degradation. VFA production at pH 10 increased up to 30,300 mgCOD/L (yield of 630 mg COD/gVS) but reduced over time to ≈10,000 mgCOD/L.

View Article and Find Full Text PDF

Production of targeted volatile fatty acid (VFA) composition by fermentation is a promising approach for upstream and post-stream VFA applications. In the current study, the bioaugmented mixed microbial culture by was used to produce an acetic acid dominant VFA mixture. For this purpose, anaerobic sequencing batch reactors (bioaugmented and control) were operated under pH 10 and fed by cheese processing wastewater.

View Article and Find Full Text PDF

The influence of hydraulic retention time (HRT of 3-5 h) and temperature (20-25 °C) on performance and microbial dynamics of two pilot-scale upflow anaerobic sludge blanket (UASB) reactors with different granule size distribution (UASB1 = 3-4 mm and UASB2 = 1-2 mm) were investigated for 217 days. Increasing the HRT to 5 h even at a lower temperature of 20 °C enhanced COD removal and biogas production with average of 59 ± 16% (up to 85%) and 73 ± 9 L/(m·d) (up to 102 L/(m·d)) for UASB1; 63 ± 16% (up to 85%) and 75 ± 9 L/(m·d) (up to 90 L/(m·d)) for UASB2, respectively. This is explained by sufficient contact time between microorganisms and substrate.

View Article and Find Full Text PDF

This study aimed to develop a novel strategy for tailor-made volatile fatty acid (VFA) composition. For this purpose, the mixed microbial culture was bioaugmented by Propionibacterium acidipropionici. Anaerobic sequencing batch reactors were operated with cheese wastewater under alkali pH.

View Article and Find Full Text PDF

The episodic outbreak of COVID-19 due to SARS-CoV-2 is severely affecting the economy, and the global count of infected patients is increasing. The actual number of patients had been underestimated due to limited facilities for testing as well as asymptomatic nature of the expression of COVID-19 on individual basis. Tragically, for emerging economies with high population density, the situation has been more complex due to insufficient testing facilities for diagnosis of the disease.

View Article and Find Full Text PDF

Bio-based production of materials from waste streams is a pivotal aspect in a circular economy. This study aimed to investigate the influence of inoculum (three different sludge taken from anaerobic digestors), pH (5 & 10) and retention time on production of total volatile fatty acids (VFAs), VFA composition as well as the microbial community during anaerobic digestion of food waste. The highest VFA production was ∼22000 ± 1036 mg COD/L and 12927 ± 1029 mg COD/L on day 15 using the inoculum acclimated to food waste at pH 10 and pH 5, respectively.

View Article and Find Full Text PDF

Production of polyhydroxyalkanoates is an important field in the biorefinery as bio-alternative to conventional plastics. However, its commercialization is still limited by high production cost. In this study, a process with the potential to reduce the production cost of polyhydroxyalkanoates was proposed.

View Article and Find Full Text PDF

Increased awareness of environmental sustainability with associated strict environmental regulations has incentivized the pursuit of novel materials to replace conventional petroleum-derived plastics. Polyhydroxyalkanoates (PHAs) are appealing intracellular biopolymers and have drawn significant attention as a viable alternative to petrochemical based plastics not only due to their comparable physiochemical properties but also, their outstanding characteristics such as biodegradability and biocompatibility. This review provides a comprehensive overview of the recent developments on the involved PHA producer microorganisms, production process from different waste streams by both pure and mixed microbial cultures (MMCs).

View Article and Find Full Text PDF

Increased concern has recently emerged pertaining to the occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in aquatic environment during the current coronavirus disease 2019 (COVID-19) pandemic. While infectious SARS-CoV-2 has yet to be identified in the aquatic environment, the virus potentially enters the wastewater stream from patient excretions and a precautionary approach dictates evaluating transmission pathways to ensure public health and safety. Although enveloped viruses have presumed low persistence in water and are generally susceptible to inactivation by environmental stressors, previously identified enveloped viruses persist in the aqueous environment from days to several weeks.

View Article and Find Full Text PDF

Wastewater-based epidemiology offers a cost-effective alternative to testing large populations for SARS-CoV-2 virus, and may potentially be used as an early warning system for SARS-CoV-2 pandemic spread. However, viruses are highly diluted in wastewater, and a validated method for their concentration and further processing, and suitable reference viruses, are the main needs to be established for reliable SARS-CoV-2 municipal wastewater detection. For this purpose, we collected wastewater from two European cities during the Covid-19 pandemic and evaluated the sensitivity of RT-qPCR detection of viral RNA after four concentration methods (two variants of ultrafiltration-based method and two adsorption and extraction-based methods).

View Article and Find Full Text PDF

Microbes from the three domains of life, , , and , share the need to sense and respond to changes in the external and internal concentrations of protons. When the proton concentration is high, acidic conditions prevail and cells must respond appropriately to ensure that macromolecules and metabolic processes are sufficiently protected to sustain life. While, we have learned much in recent decades about the mechanisms that microbes use to cope with acid, including the unique challenges presented by organic acids, there is still much to be gained from developing a deeper understanding of the effects and responses to acid in microbes.

View Article and Find Full Text PDF