Phosphorylation is the most important and studied post-translational modification (PTM), which plays a crucial role in protein function studies and experimental design. Many significant studies have been performed to predict phosphorylation sites using various machine-learning methods. Recently, several studies have claimed that deep learning-based methods are the best way to predict the phosphorylation sites because deep learning as an advanced machine learning method can automatically detect complex representations of phosphorylation patterns from raw sequences and thus offers a powerful tool to improve phosphorylation site prediction.
View Article and Find Full Text PDF