Diffractive achromats (DAs) combined with image processing algorithms offer a promising lens solution for high-performance ultra-thin imagers. However, the design of large-aperture DAs that align seamlessly with image processing algorithms remains challenging. Existing sequential methods, which prioritize focusing efficiency in DAs before selecting an algorithm, may not achieve a satisfactory match due to an ambiguous relationship between efficiency and final imaging quality.
View Article and Find Full Text PDFAims: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for hematological malignancies. However, viral infections, particularly EBV infection, frequently occur following allo-HSCT and can result in multi-tissue and organ damage. Due to the lack of effective antiviral drugs, these infections can even progress to post-transplant lymphoproliferative disorders (PTLD), thereby impacting the prognosis.
View Article and Find Full Text PDFNatural killer (NK) cells are lymphocytes that are involved in controlling tumors or microbial infections through the production of interferon gamma (IFN-γ). Granulocyte colony-stimulating factor (G-CSF) inhibits IFN-γ secretion by NK cells, but the mechanism underlying this effect remains unclear. Here, by comparing the multi-omics profiles of human NK cells before and after in vivo G-CSF treatment, we identify a pathway that is activated in response to G-CSF treatment, which suppresses IFN-γ secretion in NK cells.
View Article and Find Full Text PDFCytomegalovirus (CMV) infection and acute graft-versus-host disease (aGVHD) are two major complications that contribute to a poor prognosis after hematopoietic stem cell transplantation (HSCT). Superior early immune reconstitution (IR) is associated with improved survival after HSCT. However, when all three factors, CMV infection, aGVHD, and IR, are concomitantly considered, the effects of the triple events on HSCT are still unknown and should be studied further.
View Article and Find Full Text PDFNatural killer (NK) cells exert anti-viral effects after haematopoietic stem cell transplantation (HSCT). The balance between inhibition and activation of NK cells determined by the inherited repertoire of killer cell immunoglobulin-like receptors (KIR) genes may influence Epstein-Barr virus (EBV) reactivation after transplantation. To evaluate the relative contributions of KIR genotypes to EBV reactivation, we prospectively enrolled 300 patients with malignant haematological disease who were suitable for haploidentical HSCT.
View Article and Find Full Text PDFMesenchymal stem-like/claudin-low (MSL/CL) breast cancers are highly aggressive, express low cell-cell adhesion cluster containing claudins (CLDN3/CLDN4/CLDN7) with enrichment of epithelial-to-mesenchymal transition (EMT), immunomodulatory, and transforming growth factor-β (TGF-β) genes. We examined the biological, molecular and prognostic impact of TGF-β upregulation and/or inhibition using in vivo and in vitro methods. Using publically available breast cancer gene expression databases, we show that upregulation and enrichment of a TGF-β gene signature is most frequent in MSL/CL breast cancers and is associated with a worse outcome.
View Article and Find Full Text PDFTriple-negative breast cancers (TNBC) are among the most aggressive and heterogeneous cancers with a high propensity to invade, metastasize and relapse. Here, we demonstrate that the anticancer compound, AMPI-109, is selectively efficacious in inhibiting proliferation and inducing apoptosis of multiple TNBC subtype cell lines as assessed by activation of pro-apoptotic caspases-3 and 7, PARP cleavage and nucleosomal DNA fragmentation. AMPI-109 had little to no effect on growth in the majority of non-TNBC cell lines examined.
View Article and Find Full Text PDFMetformin treatment has been associated with a decrease in breast cancer risk and improved survival. Metformin induces complex cellular changes, resulting in decreased tumor cell proliferation, reduction of stem cells, and apoptosis. Using a carcinogen-induced rodent model of mammary tumorigenesis, we recently demonstrated that overfeeding in obese animals is associated with a 50% increase in tumor glucose uptake, increased proliferation, and tumor cell reprogramming to an "aggressive" metabolic state.
View Article and Find Full Text PDFWe have shown that erbB2 altered breast cancer cells are less sensitive to the anti-proliferative effects of metformin than triple negative cells, and have described the differences of molecular mechanisms of metformin action by tumor subtypes. We hypothesized that metformin may be more effective against trastuzumab-resistant erbB2-overexpressing breast cancer cells because it targets the critical signaling pathways that are altered with resistance. BT474, SKBR3 and derived trastuzumab-resistant sublines BT474-HR20 (HR20) and SKBR3-pool2 (pool2) were used to test this hypothesis.
View Article and Find Full Text PDFIncreasing evidence suggests molecular interactions between erbB2 and other receptor tyrosine kinases, and estrogenic compounds and their cognate receptors. We have recently reported that downregulation of erbB3 abrogates erbB2-mediated tamoxifen resistance in breast cancer cells. On the basis of these data, we hypothesized that erbB3 may play a major role connecting these two sentinel pathways.
View Article and Find Full Text PDFTriple negative (TN) breast cancer is more frequent in women who are obese or have type II diabetes, as well as young women of color. These cancers do not express receptors for the steroid hormones estrogen or progesterone, or the type II receptor tyrosine kinase (RTK) Her-2 but do have upregulation of basal cytokeratins and the epidermal growth factor receptor (EGFR). These data suggest that aberrations of glucose and fatty acid metabolism, signaling through EGFR and genetic factors may promote the development of TN cancers.
View Article and Find Full Text PDFReceptor tyrosine kinase activity is essential for erbB2 (HER2/neu) promotion of breast carcinogenesis, metastasis and therapeutic resistance. erbB2 kinase can be activated by dimerization with another erbB receptor, most of which bind ligands. Of these, the erbB2/erbB3 heterodimer is the most potent oncogenic complex.
View Article and Find Full Text PDF