Meningioma is one of the most common primary neoplasms in the central nervous system, but no specific molecularly targeted therapy has been approved for the clinical treatment of aggressive meningiomas. There is hence an urgent demand to decrypt the biological and molecular landscape of malignant meningioma. Here, through the in-silica prescreening and 10-year follow-up studies of 445 meningioma patients, we uncovered that CBX7 expression progressively decreases with malignancy grade and neoplasia stage in meningioma, and a high CBX7 expression level predicts a favorable prognosis in meningioma patients.
View Article and Find Full Text PDFBackground: Dysregulation of immune infiltration critically contributes to the tumorigenesis and progression of meningiomas. However, the landscape of immune microenvironment and key genes correlated with immune cell infiltration remains unclear.
Methods: Four Gene Expression Omnibus data sets were included.
Cardiovascular diseases (CVDs) remain the world's leading cause of death despite the best available healthcare and therapy. Emerging as a key mediator of intercellular and inter-organ communication in CVD pathogenesis, extracellular vesicles (EVs) are a heterogeneous group of membrane-enclosed nano-sized vesicles released by virtually all cells, of which their RNA cargo, especially non-coding RNAs (ncRNA), has been increasingly recognized as a promising diagnostic and therapeutic target. Recent evidence shows that ncRNAs, such as small ncRNAs, circular RNAs, and long ncRNAs, can be selectively sorted into EVs or other non-vesicular carriers and modulate various biological processes in recipient cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2022
Colorectal cancer is one of the most common malignancies causing the majority of cancer-related deaths. There is an urgent need to develop new anticancer modalities. Recently, efforts have been made to turn clinically approved drugs into anticancer agents in specific tumor microenvironments via NPs.
View Article and Find Full Text PDFBackground: Natural bioactive substances have been widely studied for their superior anti-tumor activity and low toxicity. However, natural bioactive substances suffer from poor water-solubility and poor stability in the physiological environment. Therefore, to overcome the drawbacks of natural bioactive substances in tumor therapy, there is an urgent need for an ideal nanocarrier to achieve high bioactive substance loading with low toxicity.
View Article and Find Full Text PDFWith the aging of the global population, accumulating interest is focused on manipulating the fundamental aging-related signaling pathways to delay the physiological aging process and eventually slow or prevent the appearance or severity of multiple aging-related diseases. Recently, emerging evidence has shown that RNA modifications, which were historically considered infrastructural features of cellular RNAs, are dynamically regulated across most of the RNA species in cells and thereby critically involved in major biological processes, including cellular senescence and aging. In this review, we summarize the current knowledge about RNA modifications and provide a catalog of RNA modifications on different RNA species, including mRNAs, miRNAs, lncRNA, tRNAs, and rRNAs.
View Article and Find Full Text PDFThe transition of embryonic stem cells from the epiblast stem cells (EpiSCs) to neural progenitor cells (NPCs), called the neural induction process, is crucial for cell fate determination of neural differentiation. However, the mechanism of this transition is unclear. Here, we identified a long non-coding RNA (linc1548) as a critical regulator of neural differentiation of mouse embryonic stem cells (mESCs).
View Article and Find Full Text PDFA microdeletion within human chromosome 5q14.3 has been associated with the occurrence of neurodevelopmental disorders, such as autism and intellectual disability, and MEF2C haploinsufficiency was identified as main cause. Here, we report that a brain-enriched long non-coding RNA, NDIME, is located near the MEF2C locus and is required for normal neural differentiation of mouse embryonic stem cells (mESCs).
View Article and Find Full Text PDFAlthough the functional roles of long noncoding RNAs (lncRNAs) have been increasingly identified, few lncRNAs that control the naïve state of embryonic stem cells (ESCs) are known. Here, we report a naïve-state-associated lncRNA, LincU, which is intrinsically activated by Nanog in mESCs. LincU-deficient mESCs exhibit a primed-like pluripotent state and potentiate the transition from the naïve state to the primed state, whereas ectopic LincU expression maintains mESCs in the naïve state.
View Article and Find Full Text PDFDuring reprogramming, telomere re-elongation is important for pluripotency acquisition and ensures the high quality of induced pluripotent stem cells (iPSCs), but the regulatory mechanism remains largely unknown. Our study showed that fully reprogrammed mature iPSCs or mouse embryonic stem cells expressed higher levels of miR-590-3p and miR-590-5p than pre-iPSCs. Ectopic expression of either miR-590-3p or miR-590-5p in pre-iPSCs improved telomere elongation and pluripotency.
View Article and Find Full Text PDFLarge intergenic non-coding RNAs (lincRNAs) play widespread roles in epigenetic regulation during multiple differentiation processes, but little is known about their mode of action in cardiac differentiation. Here, we identified the key roles of a lincRNA, termed linc1405, in modulating the core network of cardiac differentiation by functionally interacting with Eomes. Chromatin- and RNA-immunoprecipitation assays showed that exon 2 of linc1405 physically mediates a complex consisting of Eomes, trithorax group (TrxG) subunit WDR5, and histone acetyltransferase GCN5 binding at the enhancer region of Mesp1 gene and activates its expression during cardiac mesoderm specification of embryonic stem cells.
View Article and Find Full Text PDFSin3a is a core component of histone-deacetylation-activity-associated transcriptional repressor complex, playing important roles in early embryo development. Here, we reported that down-regulation of Sin3a led to the loss of embryonic stem cell (ESC) self-renewal and skewed differentiation into mesendoderm lineage. We found that Sin3a functioned as a transcriptional coactivator of the critical Nodal antagonist Lefty1 through interacting with Tet1 to de-methylate the Lefty1 promoter.
View Article and Find Full Text PDFClarifying the regulatory mechanisms of embryonic stem cell (ESC) neural differentiation is helpful not only for understanding neural development but also for obtaining high-quality neural progenitor cells required by stem cell therapy of neurodegenerative diseases. Here, we found that long noncoding RNA 1604 (lncRNA-1604) was highly expressed in cytoplasm during neural differentiation, and knockdown of lncRNA-1604 significantly repressed neural differentiation of mouse ESCs both in vitro and in vivo. Bioinformatics prediction and mechanistic analysis revealed that lncRNA-1604 functioned as a novel competing endogenous RNA of miR-200c and regulated the core transcription factors ZEB1 and ZEB2 during neural differentiation.
View Article and Find Full Text PDFEnvironmental stresses are increasingly acknowledged as core causes of abnormal neural induction leading to neural tube defects (NTDs). However, the mechanism responsible for environmental stress-triggered neural induction defects remains unknown. Here, we report that a spectrum of environmental stresses, including oxidative stress, starvation, and DNA damage, profoundly activate SIRT1, an NAD-dependent lysine deacetylase.
View Article and Find Full Text PDF