Publications by authors named "Zeyi Jiang"

Transition metal-based nanoparticles (NPs) are emerging as potential alternatives to platinum for catalyzing the oxygen reduction reaction (ORR) in zinc-air batteries (ZAB). However, the simultaneous coexistence of single-atom moieties in the preparation of NPs is inevitable, and the structural complexity of catalysts poses a great challenge to identifying the true active site. Herein, by employing in situ and ex situ XAS analysis, we demonstrate the coexistence of single-atom moieties and iron phosphide NPs in the N, P co-doped porous carbon (in short, Fe-N-FeP NPs/NPC), and identify that ORR predominantly proceeds via the atomic-dispersed Fe-N sites, while the presence of FeP NPs exerts an inhibitory effect by decreasing the site utilization and impeding mass transfer of reactants.

View Article and Find Full Text PDF

The design and development of high-performance and long-life Pt-free catalysts for the oxygen reduction reaction (ORR) is of great important with respect to metal-air batteries and fuel cells. Herein, a new low-cost covalent organic frameworks (COFs)-derived CoNC single-atoms catalyst (SAC) is fabricated and compared with the engineered nanoparticle (NP) counterpart for ORR activity. The ORR performance of the SAC catalyst (Co@NC) surpasses the NP counterpart (Co-NC) under the same operation condition.

View Article and Find Full Text PDF

Using microalgae to treat coking wastewater has important application prospects and environmental significance. Previous studies have suggested that phycoremediation of pollutants from coking wastewater is feasible and can potentially enhance biodiesel production. This work investigates the effects of phenol in coking wastewater on C.

View Article and Find Full Text PDF

This paper develops a process-level carbon emission calculation model for iron and steel enterprises through the carbon emission mechanism of the whole production process. The relationship between material, energy and carbon flows is considered and combined. The carbon emissions of enterprises are divided into industrial emissions and combustion emissions, and the indirect emissions of purchased intermediate products and electricity purchased from the grid are also considered.

View Article and Find Full Text PDF

Microalgae coculture has the potential to promote microalgae biofilm growth. Herein, three two-species cocultured biofilms were studied by determining biomass yields and detailed microstructure parameters, including porosity, average pore length, average cluster length, etc. It was found that biomass yields could reduce by 21-53 % when biofilm porosities decreased from about 35 % to 20 %; while at similar porosities (∼20 %), biomass yields of cocultured biofilms increased by 37 % when they possessed uniform microstructure and small cell-clusters (pores and clusters of 1 ∼ 10 μm accounted for 96 % and 68 %, respectively).

View Article and Find Full Text PDF
Article Synopsis
  • Photothermal superhydrophobic surfaces are effective anti-/deicing materials but face challenges due to low solar energy density; a new solution incorporates microencapsulated phase change materials (MPCMs) to enhance efficiency.
  • Dual-shell octahedral MPCMs have been developed using a copper oxide (Cu O) layer and a copper sulfide (Cu S) layer, achieving a high photothermal conversion efficiency of 96.1% with stable performance over 200 cycles.
  • The innovative coatings created from these MPCMs demonstrate excellent anti-/deicing capabilities, particularly in low temperature and high humidity conditions, presenting a significant advancement in the design of high-performance materials for icy environments.
View Article and Find Full Text PDF

Thermally conductive cellulose-based composites have great application potential in the thermal management of portable and wearable electronic devices. In this work, cellulose-based composites with excellent mechanical and thermal properties were developed by using lysozyme-modified graphene nanoplatelets (LmGNP), epichlorohydrin (ECH), and hydrolyzed cellulose via forming strong double-cross-linked interface interactions, including the hydrogen bond network generated between LmGNP and cellulose and the chemical cross-link of ECH. As for the composites containing 8 wt % LmGNP, the in-plane thermal conductivity was 3.

View Article and Find Full Text PDF

Research on conjugated radiation-conduction (CRC) heat transfer in participating media is of vital scientific and engineering significance due to its extensive applications. Appropriate and practical numerical methods are essential to forecast the temperature distributions during the CRC heat-transfer processes. Here, we established a unified discontinuous Galerkin finite-element (DGFE) framework for solving transient CRC heat-transfer problems in participating media.

View Article and Find Full Text PDF

In conventional lime calcination processes, because of fuel combustion in the kiln, the carbon dioxide (CO) from limestone decomposition is mixed with the flue gas, which results in energy requirement for gas separation in the carbon capture process. Here, a novel lime calcination system with carrier gas (CO) heating and air cooling is proposed to avoid the mixing problem of the CO and the flue gas. This system consists of a new shaft kiln with four processing zones and a furnace system, where fuel combustion, limestone reaction, and lime cooling are carried out separately.

View Article and Find Full Text PDF

Biofilm structure plays an important role in microalgae biofilm-based culture. This work aims to understand microalgal biofilm structures formed under different light conditions. Here, Scenedesmus obliquus was biofilm cultured under the light spectra of white, blue, green, and red, and the photoperiods of 5:5 s, 30:30 min, and 12:12 h (light : dark period).

View Article and Find Full Text PDF

Microalgae biofilm-based culture systems have wide applications in environmental engineering and biotechnology. Biofilm structure is critical for the transport of nutrients, gas, and signaling molecules in a microalgal biofilm. This work aims to understand the influence of cell surface energy (SE) on the microalgal biofilm structure.

View Article and Find Full Text PDF

Thermal management has become a critical challenge in electronics and portable devices. To address this issue, polymer composites with high thermal conductivity (TC) and low dielectric property are urgently needed. In this work, we fabricated perfluoroalkoxy (PFA) composite with high anisotropic TC and low dielectric constant by aligning boron nitride nanosheets (BNNs) via hot pressing.

View Article and Find Full Text PDF

With the rapid development of electronics and portable devices, polymer nanocomposites with high through-plane thermal conductivity (TC) are urgently needed. In this work, we fabricated graphene nanosheets-perfluoroalkoxy (GNs-PFA) composite sheets with high through-plane TCs via hot-pressing followed by mechanical machining. When the GNs content exceeded 10 wt%, GNs were vertically aligned in the PFA matrix, and the through-plane TCs of nanocomposites were 10-15 times higher than their in-plane TCs.

View Article and Find Full Text PDF

Because of their atomic thinness, two-dimensional (2D) nanosheets need be bound to a substrate or be dispersed in material in various applications. The surface tension (ST) of a 2D nanosheet is critical for analyzing the physicochemical interactions between 2D nanosheets and other materials. To date, the determination of the ST of 2D nanosheets has relied mainly on the contact angle (CA) method.

View Article and Find Full Text PDF

Microalgae adhesion plays a critical role in developing effective photobioreactors for large-scale production of microalgae biofuel. This study focused on elucidating the influencing mechanism of liquid medium pH on microalgae adhesion by identifying the dominant interactions between cell and substratum using a criterion. Herein, the adhesion of three microalgae onto two substrata at a series of pH was observed using a flow chamber.

View Article and Find Full Text PDF

Cell adhesion is ubiquitous and plays an important role in various scientific and engineering problems. Herein, a quantitative criterion to predict cell adhesion was proposed by identifying the dominant interaction between microorganisms and abiotic surfaces. According to the criterion, the dominant interaction in cell adhesion could be identified as a Lewis acid-base (AB) interaction or electrostatic (EL) interaction via comparison of two expressions containing the electron-donor characteristics of the microorganism (γ) and abiotic surface (γ) and their ζ potentials (ζ, ζ).

View Article and Find Full Text PDF

Graphene nanoplatelets (GNPs) can be produced by exfoliating graphite in solvents via high-power tip sonication. In order to understand the influence of tip sonication parameters on graphite exfoliation to form GNPs, three typical flaked graphite samples were exfoliated into GNPs via tip sonication at power of 60, 100, 200, or 300 W for 10, 30, 60, 90, 120, or 180 min. The concentration of GNP dispersions, the size and defect density of the produced GNPs, and the sedimentation behavior of GNP dispersions produced under various tip sonication parameters were determined.

View Article and Find Full Text PDF

The organic matter and surfactants in wastewater may cause variations in the surface tension of wastewater (STW) ranging between ∼40 and ∼70 mJ·m. This study focused on the influence of STW on microalgae biofilm formation. A theoretical analysis was first conducted, and then microalgae biofilm formation on hydrophilic and hydrophobic substrata in liquid and real wastewater with different surface tensions was studied.

View Article and Find Full Text PDF

Thermal properties including the crystallization behavior, thermal stability and thermal conductivity for a series of graphene nanoplatelet (GNP)-polytetrafluoroethylene (PTFE) nanocomposites were studied. The GNP-PTFE nanocomposites were fabricated solvent-assisted blending followed by cold-pressing and sintering. The results indicated that the GNP-PTFE nanocomposites retained the good thermal stability of the PTFE matrix, and possessed better crystallization and much higher thermal conductivity than pure PTFE.

View Article and Find Full Text PDF

The aim of this work was to study the light/dark (L/D) cycle in raceway ponds (RWPs) by the computational fluid dynamics (CFD) method via determining the hydrodynamics of culture media and cell trajectories. The effects of paddlewheel rotational speed and flow-deflector baffles installation on the L/D cycle were analyzed. The results indicated that, the L/D cycles of microalgae cells decreased with the increase of the paddlewheel rotational speeds, when the paddlewheel rotational speeds ranged from 5 to 12rpm.

View Article and Find Full Text PDF

Bacterial adhesion onto solid surfaces is of importance in a wide spectrum of problems, including environmental microbiology, biomedical research, and various industrial applications. Despite many research efforts, present thermodynamic models that rely on the evaluation of the adhesion energy are often elusive in predicting the bacterial adhesion behavior. Here, we developed a new spectrophotometric method to determine the surface free energy (SFE) of bacterial cells.

View Article and Find Full Text PDF

Cell sorting is an important screening process in microbiology, biotechnology, and clinical research. Existing methods are mainly based on single-cell analysis as in flow cytometric and microfluidic cell sorters. Here we report a label-free bulk method for sorting cells by differentiating their characteristic surface free energies (SFEs).

View Article and Find Full Text PDF

Microalgae are one of the most promising renewable energy sources with environmental sustainability. The surface free energy of microalgal cells determines their biofouling and bioflocculation behavior and hence plays an important role in microalgae cultivation and harvesting. To date, the surface energetic properties of microalgal cells are still rarely studied.

View Article and Find Full Text PDF

The influences of algal cell size and surface charge on rheological properties of microalgae suspensions were investigated. The effective viscosity of two microalgae suspensions, i.e.

View Article and Find Full Text PDF