Publications by authors named "Zeyao Han"

The performance of lead sulfide colloidal quantum dot (PbS-CQD) solar cells has long been hindered by interface defects in the transport layer. Traditionally, 1,2-ethanedithiol (EDT), used in solid-state ligand exchange, has been a common choice as the hole transport layer (HTL) in many PbS-CQD solar cells. However, the rapid reaction rate and chain length mismatch (shorter-chain EDT versus longer-chain oleic acid) during the ligand exchange process often introduce crack defects in the HTL film, resulting in an unexpected low performance.

View Article and Find Full Text PDF

Colloidal quantum dots (CQDs) have garnered considerable attention for photodetectors (PDs), attributable to exceptional photoelectric properties and ease solution-based processing. However, the prevalent use of 1,2-ethanedithiol (EDT) as a hole transport layer (HTL) has limitations, such as energy level discrepancies, requisite oxidation, and intricate multilayer assembly. Organic p-type materials, lauded for their superior attributes and synthetic versatility, are now stepping forward as viable substitutes for conventional EDT HTLs.

View Article and Find Full Text PDF

Ultraviolet (UV) light, invisible to the human eye, possesses both benefits and risks. To harness its potential, UV photodetectors (PDs) have been engineered. These devices can convert UV photons into detectable signals, such as electrical impulses or visible light, enabling their application in diverse fields like environmental monitoring, healthcare, and aerospace.

View Article and Find Full Text PDF

Although alveolar macrophages (AMs) play important roles in preventing and eliminating pulmonary infections, little is known about their regulation in healthy animals. Since exposure to LPS often renders cells hyporesponsive to subsequent LPS exposures ("tolerant"), we tested the hypothesis that LPS produced in the intestine reaches the lungs and stimulates AMs, rendering them tolerant. We found that resting AMs were more likely to be tolerant in mice lacking acyloxyacyl hydrolase (AOAH), the host lipase that degrades and inactivates LPS; isolated Aoah-/- AMs were less responsive to LPS stimulation and less phagocytic than were Aoah+/+ AMs.

View Article and Find Full Text PDF

Organic-inorganic halide perovskites (HPs) have attracted respectable interests as active layers in solar cells, light-emitting diodes, photodetectors, Besides the promising optoelectronic properties and solution-processed preparation, the soft lattice in HPs leads to flexible and versatile compositions and structures, providing an effective platform to regulate the bandgaps and optoelectronic properties. However, conventional solution-processed HPs are homogeneous in composition. Therefore, it often requires the cooperation of multiple devices in order to achieve multi-band detection or emission, which increases the complexity of the detection/emission system.

View Article and Find Full Text PDF

Multispectral sensing is extremely desired in intelligent systems, e.g., autonomous vehicles, encrypted information communication, and health biometric monitoring, due to its highly sensitive spectral discrimination ability.

View Article and Find Full Text PDF

The multispectral fusion of near-infrared (NIR) and visible red-green-blue (RGB) photons can enhance target identification under weak light conditions. Nevertheless, the crosstalk between NIR and RGB photons in a traditional pixelated sensor impedes their practical application, while using complex algorithms and optical filters would significantly increase the cost, form factor, and frame latency. In this work, a delicate monolithic RGBN (RGB-NIR) multispectral photodetector (PD) is proposed on the basis of perovskite materials without complicated algorithms or optical filters.

View Article and Find Full Text PDF

Terahertz (THz) detection technology is getting increasing attention from scientists and industries alike due to its superiority in imaging, communication, and defense. Unfortunately, the detection of THz electromagnetic waves under room temperature requires a complicated device architecture design or additional cryogenic cooling units, which increase the cost and complexity of devices, subsequently imposing an impediment in its universal application. In this work, THz detectors operated under room temperature are designed based on the thermoelectric effect with MAPbI single crystals (SCs) as active layers.

View Article and Find Full Text PDF

Halide perovskite (HP) single crystals (SCs) are garnering extensive attention as active materials to substitute polycrystalline counterparts in solar cells, photodiodes, and photodetectors, etc. Nevertheless, the large thickness and defect-rich surface results in severe carrier recombination and becomes the major bottleneck for augmented performance. In this perspective, we are looking forward to explaining in detail why the SCs hardly unleash their engrossing potential and introduce two parallel paths for further advancement.

View Article and Find Full Text PDF

Miniaturized multispectral detectors are urgently desired given the unprecedented prosperity of smart optoelectronic chips for integrated functions including communication, imaging, scientific analysis, etc. However, multispectral detectors require complicated prism optics or interference/interferometric filters for spectral recognition, which hampers the miniaturization and their subsequent integration in photonic integrated circuits. In this work, inspired by the advance of computational imaging, optical-component-free miniaturized multispectral detector on 4 mm gradient bandgap MAPbX microwire with a diameter of 30 µm, is reported.

View Article and Find Full Text PDF

Photodetectors selective to the polarization empower breakthroughs in sensing technology for target identification. However, the realization of polarization-sensitive photodetectors based on intrinsically anisotropic crystal structure or extrinsically anisotropic device pattern requires complicated epitaxy and etching processes, which limit scalable production and application. Here, solution-processed PEA MA (Sn Pb ) I (PEA= phenylethylammonium, MA= methylammonium) polycrystalline film is probed as photoactive layer toward sensing polarized photon from 300 to 1050 nm.

View Article and Find Full Text PDF

Due to the rapid development of smart technology infusion, visible light communication (VLC) has been promising as a connection belt among real estates due to the appealing features including fast speed of data transmission and high bandwidth. Unfortunately, the issues of crosstalk, interference, or data leakage in the VLC impose rigorous requests for the receiver terminal, photodetector, including fast and accurate signal recognition, rapid decoding, etc. In pursuit of distinctive merits, a dual-band photodetector is proposed as an efficient receiver terminal for VLC in this work.

View Article and Find Full Text PDF

Multispectral detection and imaging facilitate advances in target identification; for example, the switchable functionality of sensing visible photons and sensing near-infrared photons in the eyes of some vertebrate species provide visual sensitivity beyond the range of human vision. In this work, a single sensor device is constructed with stacking solution-processed MAPbI3 and MA0.5FA0.

View Article and Find Full Text PDF

Ensuring nuclear safety has become of great significance as nuclear power is playing an increasingly important role in supplying worldwide electricity. β-ray monitoring is a crucial method, but commercial organic scintillators for β-ray detection suffer from high temperature failure and irradiation damage. Here, we report a type of β-ray scintillator with good thermotolerance and irradiation hardness based on a two-dimensional halide perovskite.

View Article and Find Full Text PDF

Fluorescence imaging with photodetectors (PDs) toward near-infrared I (NIR-I) photons (700-900 nm), the so-called "optical window" in organisms, has provided an important path for tracing biological processes in vivo. With both excitation photons and fluorescence photons in this narrow range, a stringent requirement arises that the fluorescence signal should be efficiently differentiated for effective sensing, which cannot be fulfilled by common PDs with a broadband response such as Si-based PDs. In this work, delicate optical microcavities are designed to develop a series of bionic PDs with selective response to NIR-I photons, the merits of a narrowband response with a full width at half maximum (FWHM) of <50 nm, and tunability to cover the NIR-I range are highlighted.

View Article and Find Full Text PDF

Fully-inorganic halide perovskites (HPs) have realized respectable progress in multiple optoelectronic applications. However, Cl-based fully-inorganic HPs that are ideal for ultraviolet (UV) photodetection applications in high demand still remain rarely explored mainly due to the poor solution processability compared with other counterparts. Here we propose a facile solution method to fabricate CsPbCl with not only high crystallinity but also a two dimensional (2D) morphology for efficient UV photodetection.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioncrnmq5ji4t6id5mdgc75hq3769jblhl5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once