Publications by authors named "Zexu Dang"

Characterisation of animal models of diabetic cardiomyopathy may help unravel new molecular targets for therapy. Long-living individuals are protected from the adverse influence of diabetes on the heart, and the transfer of a longevity-associated variant (LAV) of the human gene protects cardiac function in the mouse model. This study aimed to determine the effect of therapy on the metabolic phenotype (ultra-high-performance liquid chromatography-mass spectrometry, UHPLC-MS) and cardiac transcriptome (next-generation RNAseq) in mice.

View Article and Find Full Text PDF

Aims: Homozygosity for a four-missense single-nucleotide polymorphism haplotype of the human BPIFB4 gene is enriched in long-living individuals. Delivery of this longevity-associated variant (LAV) improved revascularisation and reduced endothelial dysfunction and atherosclerosis in mice through a mechanism involving the stromal cell-derived factor-1 (SDF-1). Here, we investigated if delivery of the LAV-BPIFB4 gene may attenuate the progression of diabetic cardiomyopathy.

View Article and Find Full Text PDF

Objective- To determine the role of the oncofetal protein TPBG (trophoblast glycoprotein) in normal vascular function and reparative vascularization. Approach and Results- Immunohistochemistry of human veins was used to show TPBG expression in vascular smooth muscle cells and adventitial pericyte-like cells (APCs). ELISA, Western blot, immunocytochemistry, and proximity ligation assays evidenced a hypoxia-dependent upregulation of TPBG in APCs not found in vascular smooth muscle cells or endothelial cells.

View Article and Find Full Text PDF

Aims/hypothesis: Sensory neuropathy is common in people with diabetes; neuropathy can also affect the bone marrow of individuals with type 2 diabetes. However, no information exists on the state of bone marrow sensory innervation in type 1 diabetes. Sensory neurons are trophically dependent on nerve growth factor (NGF) for their survival.

View Article and Find Full Text PDF

Aims/hypothesis: Upon tissue injury, peripheral sensory neurons release nociceptive factors (e.g. substance P [SP]), which exert local and systemic actions including the recruitment of bone marrow (BM)-derived haematopoietic stem and progenitor cells (HSPCs) endowed with paracrine pro-angiogenic properties.

View Article and Find Full Text PDF

Rationale: Long living individuals show delay of aging, which is characterized by the progressive loss of cardiovascular homeostasis, along with reduced endothelial nitric oxide synthase activity, endothelial dysfunction, and impairment of tissue repair after ischemic injury.

Objective: Exploit genetic analysis of long living individuals to reveal master molecular regulators of physiological aging and new targets for treatment of cardiovascular disease.

Methods And Results: We show that the polymorphic variant rs2070325 (Ile229Val) in bactericidal/permeability-increasing fold-containing-family-B-member-4 (BPIFB4) associates with exceptional longevity, under a recessive genetic model, in 3 independent populations.

View Article and Find Full Text PDF

Rationale: Optimization of cell therapy for cardiac repair may require the association of different cell populations with complementary activities.

Objective: Compare the reparative potential of saphenous vein-derived pericytes (SVPs) with that of cardiac stem cells (CSCs) in a model of myocardial infarction, and investigate whether combined cell transplantation provides further improvements.

Methods And Results: SVPs and CSCs were isolated from vein leftovers of coronary artery bypass graft surgery and discarded atrial specimens of transplanted hearts, respectively.

View Article and Find Full Text PDF

The transport of antigen to the secondary lymphoid tissue is a central component in the initiation of the adaptive immune response. The mechanism of antigen delivery to the DLN from the avascular cornea has not been fully explored. Previous studies in the mouse have shown that cell-associated corneal antigen is delivered within 6 h to the eye draining SM DLN via DCs and macrophages.

View Article and Find Full Text PDF

Background: Chronic allograft injury (CAI), characterized by interstitial fibrosis and tubular atrophy, leads to a progressive decline in graft function, resulting in the loss of 5% of renal transplants per annum, and eludes specific therapies. Galectin-3 (gal-3) is a β-galactoside-binding lectin expressed in diverse fibrotic tissue, and mice deficient in gal-3 have reduced fibrosis in kidney, liver, and lung models. The role of gal-3 in CAI is examined in this study.

View Article and Find Full Text PDF

Purpose: The authors aimed to produce a new tear substitute capable of providing both lubrication and nutrition, based on a novel nutrient-containing therapeutic ocular surface medium (TOSM).

Methods: Viscous substances, including hypromellose (HPMC), carbopol, and sodium hyaluronate (SH) were added to the TOSM at various concentrations. Three commercial preservative-free artificial tear substitutes, Hypromellose (Pharmacy of Moorfields Eye Hospital, London, UK), Thilo-Tears (a carbomer; Alcon Pharma GmbH, Freiburg, Germany), and Vislube (a hyaluronate; Chemedica AG, Munich, Germany) were used as control preparations.

View Article and Find Full Text PDF

Tissue-engineered (TE) corneas were fabricated from porcine collagen cross-linked with 1-ethyl-3-(3-dimethyl aminoproplyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS), and were transplanted into BALB/c mice orthotopically using a full-thickness penetrating keratoplasty (PKP) procedure. The biocompatibility was evaluated by assessing both local and systemic immune responses. Myeloid cells including granulocytes and macrophages were the main infiltrating cells in recipient cornea and in retro-TE corneal membrane which developed 7-10 days post surgery.

View Article and Find Full Text PDF