Publications by authors named "Zexiong Guo"

Chemokines influence the progression of prostate cancer (PCa) through multiple mechanisms. However, the effect of C-X3-C chemokine ligand 1 (CX3CL1) on PCa risk remains controversial. Our study aimed to investigate whether circulating CX3CL1 is causally associated with PCa and to identify metabolites that have mediating effects using the 2-step bidirectional Mendelian randomization (MR) analysis process.

View Article and Find Full Text PDF

Objectives: Clear cell renal cell carcinoma (ccRCC) is highly prevalent, prone to metastasis, and has a poor prognosis after metastasis. Therefore, this study aimed to develop a prognostic model to predict the individualized prognosis of patients with metastatic clear cell renal cell carcinoma (mccRCC).

Patients And Methods: Data of 1790 patients with mccRCC, registered from 2010 to 2015, were extracted from the Surveillance, Epidemiology and End Results (SEER) database.

View Article and Find Full Text PDF

Introduction: The aim of this study was to implement our technique for the initial dissection of the inferior hypogastric plexus and protection of the autonomic nerve supply to the corpora cavernosa in laparoscopic radical cystoprostatectomy with an orthotopic ileal neobladder and report the initial outcomes.

Methods: Eleven normally potent patients with preoperative cT2N0 bladder cancer who underwent bilateral nerve-sparing laparoscopic cystoprostatectomy performed by the same surgeon were selected from May 2018 to September 2020. In this procedure, the anterior part of the inferior hypogastric plexus was dissected first between the prehypogastric nerve fascia and rectal proper fascia medial to the distal ureter.

View Article and Find Full Text PDF

Objective: The aim of the objective was to present our initial experience and evaluate the feasibility of the novel comprehensive modified laparoscopic pyeloplasty (CMLP) technique based on membrane anatomy.

Materials And Methods: Forty-eight patients underwent CMLP from February 2016 to October 2020. CMLP involves the following: dissection of the ureter was based on the fascia or fusion fascia formed by embryonic development.

View Article and Find Full Text PDF

Background To extend the time window for thrombolysis, reducing the time for diagnosis and detection of acute cerebral infarction seems to be warranted. Purpose To evaluate the feasibility of implementing an array spatial sensitivity technique (ASSET)-echo-planar imaging (EPI)-fluid attenuated inversion recovery (FLAIR) (AE-FLAIR) sequence into an acute cerebral infarction magnetic resonance (MR) evaluation protocol, and to assess the diagnostic value of AE-FLAIR combined with three-dimensional time-of-flight MR angiography (3D TOF MRA). Material and Methods A total of 100 patients (68 men, 32 women; age range, 44-82 years) with acute cerebral infarction, including 50 consecutive uncooperative and 50 cooperative patients, were evaluated with T1-weighted (T1W) imaging, T2-weighted (T2W) imaging, FLAIR, diffusion-weighted imaging (DWI), 3D TOF, EPI-FLAIR, and AE-FLAIR.

View Article and Find Full Text PDF

Centromere protein H (CENPH), one of the essential component of active kinetochore, plays an important role in carcinogenesis of many cancer types. However, its expression signature and prognostic significance of renal cell carcinoma (RCC) are unclear. In the present study, we concluded that the expression of CENPH was prominently upregulated in RCC specimens and three RCC cell lines (ACHN, 786-O and A704).

View Article and Find Full Text PDF

Recent evidence suggests that cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein that acts as a novel therapeutic target in a variety of tumors. In this study, we investigated the clinical significance of CIP2A and its function in our large collection of prostate samples. Between August 2000 and December 2013, 126 patients with histologically confirmed prostate cancer (PCa) and 92 with benign prostate hyperplasia (BPH) were recruited into the study.

View Article and Find Full Text PDF

Recent evidence suggests that cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein that acts as a novel therapeutic target in a variety of tumors. In this study, we investigated the clinical significance of CIP2A and its function in our large collection of prostate samples. Between August 2000 and December 2013, 126 patients with histologically confirmed PCa and 92 with benign prostate hyperplasia (BPH) were recruited into the study.

View Article and Find Full Text PDF

Background: Various rat kidney transplantation models have been introduced over the decades and the study on the models seems to lack novelty and necessity. However, vascular anastomosis, especially renal vein, is still very difficult for trainees. The aim of this study was to provide the modified renal venous anastomosis of rat kidney transplantation to substitute the current method for trainees.

View Article and Find Full Text PDF

Topotecan (TPT), a highly active anticancer camptothecin drug, would benefit from nanocarrier-mediated site-specific and intracellular delivery because of a labile lactone ring whose hydrolysis inactivates the drug, poor cellular uptake resulting from both lactone hydrolysis and a titratable phenol hydroxyl, and the schedule-dependency of its efficacy due to its mechanism of action. We have encapsulated topotecan in liposomes using transmembrane gradients of triethylammonium salts of polyphosphate (Pn) or sucroseoctasulfate (SOS). Circulation lifetimes were prolonged, and the rate of drug release in vivo depended on the drug load (T(1/2)=5.

View Article and Find Full Text PDF

Purpose: Liposome and immunoliposome formulations of two vinca alkaloids, vincristine and vinblastine, were prepared using intraliposomal triethylammonium sucroseoctasulfate and examined for their ability to stabilize the drug for targeted drug delivery in vivo.

Methods: The pharmacokinetics of both the encapsulated drug (vincristine or vinblastine) and liposomal carrier were examined in Sprague Dawley rats, and the in vivo drug release rates determined. Anti-HER2 immunoliposomal vincristine was prepared from a human anti-HER2/neu scFv and studied for targeted cytotoxic activity in cell culture, and antitumor efficacy in vivo.

View Article and Find Full Text PDF

Effective liposomal formulations of vinorelbine (5' nor-anhydro-vinblastine; VRL) have been elusive due to vinorelbine's hydrophobic structure and resulting difficulty in stabilizing the drug inside the nanocarrier. Triethylammonium salts of several polyanionic trapping agents were used initially to prepare minimally pegylated nanoliposomal vinorelbine formulations with a wide range of drug release rates. Sulfate, poly(phosphate), and sucrose octasulfate were used to stabilize vinorelbine intraliposomally while in circulation, with varying degrees of effectiveness.

View Article and Find Full Text PDF

Liposome formulations of camptothecins have been actively pursued because of the potential for significant pharmacologic advantages from successful drug delivery of this important class of anticancer drugs. We describe nanoliposomal CPT-11, a novel nanoparticle/liposome construct containing CPT-11 (irinotecan) with unprecedented drug loading efficiency and in vivo drug retention. Using a modified gradient loading method featuring a sterically hindered amine with highly charged, multivalent anionic trapping agents, either polymeric (polyphosphate) or nonpolymeric (sucrose octasulfate), liposomes were capable of entrapping CPT-11 at extremely high drug-to-lipid ratios (>800 g CPT-11/mol phospholipid) and retaining encapsulated drug in vivo with a half-life of drug release in the circulation of 56.

View Article and Find Full Text PDF

We previously reported the development of epidermal growth factor receptor (EGFR)-targeted immunoliposomes that bind and internalize in tumor cells which overexpress EGFR and/or mutant EGFR variant III (EGFRvIII), enabling intracellular delivery of potent anticancer agents in vitro. We now describe in vivo proof-of-concept for this approach for the delivery of multiple anticancer drugs in EGFR-overexpressing tumor models. Anti-EGFR immunoliposomes were constructed modularly with Fab' fragments of cetuximab (IMC-C225), covalently linked to liposomes containing probes and/or anticancer drugs.

View Article and Find Full Text PDF

ErbB2-overexpressing human cancers represent potentially sensitive targets for therapy by candidate histone deacetylase (HDAC) inhibitors as we have shown that HDAC inhibitors can selectively reduce ErbB2 expression by repressing the ErbB2 promoter and accelerating the decay of cytoplasmic ErbB2 transcripts. To extend these in vitro findings and enhance the in vivo pharmacodynamic properties of HDAC inhibitors, we stably encapsulated a potent hydroxamate-based HDAC inhibitor (LAQ824) within long-circulating liposomes (Ls-LAQ824) and immunoliposomes (ILs-LAQ824) bearing >10,000 LAQ824 molecules per nanovesicle. Liposomal LAQ824 exhibits prolonged in vivo stability and, unlike free LAQ824, circulates with a half-life of 10.

View Article and Find Full Text PDF

Acetylation is a key posttranslational modification of many proteins responsible for regulating critical intracellular pathways. Although histones are the most thoroughly studied of acetylated protein substrates, histone acetyltransferases (HATs) and deacetylases (HDACs) are also responsible for modifying the activity of diverse types of nonhistone proteins, including transcription factors and signal transduction mediators. HDACs have emerged as uncredentialed molecular targets for the development of enzymatic inhibitors to treat human cancer, and six structurally distinct drug classes have been identified with in vivo bioavailability and intracellular capability to inhibit many of the known mammalian members representing the two general types of NAD+-independent yeast HDACs, Rpd3 (HDACs 1, 2, 3, 8) and Hda1 (HDACs 4, 5, 6, 7, 9a, 9b, 10).

View Article and Find Full Text PDF