Publications by authors named "Zexing Tao"

Both biotic and abiotic factors restrict changes in autumn phenology, yet their effects remain ambiguous, which hinders the accurate prediction of phenology under future climate change. In this study, based on the phenological records of 135 tree species at ten sites in China during 1979-2018, we first investigated the effects of climatic factors (temperature, precipitation, insolation and wind speed) and spring phenology on interannual changes in leaf coloring date (LCD) with the partial correlation analysis, and assessed the relative importance of phylogeny and native climate to LCD differences among species by using multivariate regression and phylogenetic eigenvector regression approach. The results showed that the effects of climate factors on interannual changes in LCD were more significant than spring phenology.

View Article and Find Full Text PDF

Climate change over the past decades has significantly altered global hydrothermal conditions and caused an evident shift in species distribution. Predicting species distribution patterns and identifying their influencing factors will be essential in developing coping strategies to prevent species extirpation and extinction. Yet, environmental factors affecting the distribution of woody species in Central Asia remain largely unknown.

View Article and Find Full Text PDF

Climate warming has advanced the spring phenology of many plant species by accelerating heat accumulation. However, delayed phenophases due to insufficient chilling have also been reported. Based on phenological observation data (1963-2010), we compared the effects of preseason chill and heat accumulation on leaf unfolding dates of four deciduous woody species (Lagerstroemia indica, Robinia pseudoacacia, Sophora japonica, and Ulmus pumila) in temperate and subtropical regions of China.

View Article and Find Full Text PDF

The relationship between the rate of development (DR) of bud-burst and temperature may be nonlinear, which could lead to varying temperature sensitivity (TS) of budburst date under different climate conditions. In order to determine the functional form between DR/TS and temperature, we gathered twigs with flower buds of five woody plants (Malus halliana, Forsythia suspense, Crataegus pinnatifida, Prunus cerasifera F. atropurpurea, and Berberis thunbergii var.

View Article and Find Full Text PDF

Continuous long-term temperature sensitivity (S) of leaf unfolding date (LUD) and main impacting factors in spring in the period 1978-2014 for 40 plant species in Mudanjiang, Heilongjiang Province, Northeast China, were analyzed by using observation data from the China Phenological Observation Network (CPON), together with the corresponding meteorological data from the China Meteorological Data Service Center. Temperature sensitivities, slopes of the regression between LUD and mean temperature during the optimum preseason (OP), were analyzed using 15-year moving window to determine their temporal trends. Major factors impacting S were then chosen and evaluated by applying a random sampling method.

View Article and Find Full Text PDF

Existing evidence demonstrates that the first flowering date (FFD) of most plant species became earlier in response to temperature increase over the past several decades. However, the studies on changes in flowering duration (FD) were limited. By using the non-parametric Theil-Sen estimator, this study investigated the temporal trends in 127 time series of FFD, end of flowering date (EFD), and FD of 97 woody plants from 1963 to 2014 at three sites (Harbin, Beijing, and Xi'an) in North China.

View Article and Find Full Text PDF

Temperature sensitivity of plant phenology (S) is a determining factor of as to what degree climate change impacts on plant species. Fu et al . (Int J Biometeorol 60:1611-1613, 2016) claimed that long long-term linear trends mask phenological shifts.

View Article and Find Full Text PDF

The impact of spring temperature forcing on the timing of leaf unfolding of plants (temperature sensitivity, S) is one important indicator of how and to what degree plant species track climate change. Fu et al. (Nature 526:104-107, 2015) found that S has significantly decreased from the 1980-1994 to the 1999-2013 period for seven mid-latitude tree species in Europe.

View Article and Find Full Text PDF

Advance in spring plant phenology over the last several decades has been found in all continents of the Northern Hemisphere. Compared to the studies detecting phenological trends, the studies investigating the geographical pattern of phenological variability (including mean date and magnitude of variability) are rather limited. In this study, we analyzed spatial pattern of mean date and standard deviation (SD) of first bloom date (FBD) time series (≥15 years) for black locust (Robinia pseudoacacia) at 22 stations in China, common lilac (Syringa vulgaris) at 79 stations in the Western US and Chinese lilac (Syringa chinensis) at 45 stations in the Eastern US.

View Article and Find Full Text PDF