Cysticercus pisiformis is a kind of tapeworm larvae of , which parasitizes the liver envelope, omentum, mesentery, and rectum of rodents such as rabbits. Cysteine protease inhibitors derived from helminth were immunoregulatory molecules of intermediate hosts and had an immunomodulatory function that regulates the production of inflammatory factors. Thus, in the present research, the recombinant Stefin of was confirmed to have the potential to fight inflammation in LPS-Mediated RAW264.
View Article and Find Full Text PDFDNA has emerged as a promising tool to build logic gates for biocomputing. However, prevailing methodologies predominantly rely on hybridization reactions or structural alterations to construct DNA logic gates, which are limited in simplicity and diversity. Herein, we developed simple and smart DNA-based logic gates for biocomputing through the DNA-mediated growth of gold nanomaterials without precise structure design and probe modification.
View Article and Find Full Text PDFArgonaute (Ago) as a powerful enzyme has provided new insights into biosensing due to its programmability, high sensitivity, and user-friendly operation. However, current strategies mainly rely on phosphorylated guide DNA to modulate the cleavage activity of Ago, which is limited in versatility and simplicity. Herein, the authors report the Mn-enhanced cleavage activity of Ago and employ Mn-ions with variable valence to regulate the activity of Pyrococcus furiosus Ago (PfAgo) for biosensing applications.
View Article and Find Full Text PDFBackground: Traditional methods for detecting insect-borne bacterial pathogens are time-consuming and require specialized laboratory facilities, limiting their applicability in areas without access to such resources. Consequently, rapid and efficient detection methods for insect-borne bacterial diseases have become a pressing need in disease prevention and control.
Methods: We aligned the ribosomal 16S rRNA sequences of seven bacterial species (Staphylococcus aureus, Shigella flexneri, Aeromonas caviae, Vibrio vulnificus, Salmonella enterica, Proteus vulgaris, and Yersinia enterocolitica) by DNASTAR Lasergene software.
The traditional lateral flow immunoassay (LFIA) with a single signal output mode may encounter challenges such as low sensitivity, poor detection range, and susceptibility to external interferences. These limitations hinder its ability to meet the growing demand for advanced LFIA. To address these issues, the rational development of multifunctional labels for multimodal LFIA emerges as a promising strategy.
View Article and Find Full Text PDFtransmits through various routes, rapidly proliferates during acute infection and causes toxoplasmosis, which is an important zoonotic disease in human and veterinary medicine. can produce nitric oxide and derivatives, and S-nitrosylation contributes to their signaling transduction and post-translation regulation. To date, the S-nitrosylation proteome of remains mystery.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2023
Antioxidants are crucial for human health, and the detection of antioxidants can provide valuable information for disease diagnosis and health management. In this work, we report a plasmonic sensing approach for the determination of antioxidants based on their antietching capacity toward plasmonic nanoparticles. The Ag shell of core-shell Au@Ag nanostars can be etched by chloroauric acid (HAuCl), whereas antioxidants can interact with HAuCl, which prevents the surface etching of Au@Ag nanostars.
View Article and Find Full Text PDFAt present, the high re-combination rate of photogenerated carriers and the low redox capability of the photocatalyst are two factors that severely limit the improvement of photocatalytic performance. Herein, a dual Z-scheme photocatalyst bismuthzirconate/graphitic carbon nitride/silver phosphate (BiZrO/g-CN/AgPO (BCA)) was synthesized using a co-precipitation method, and a dual Z-scheme heterojunction photocatalytic system was established to decrease the high re-combination rate of photogenerated carriers and consequently improve the photocatalytic performance. The re-combination of electron-hole pairs (e and h) in the valence band (VB) of g-CN increases the redox potential of e and h, leading to significant improvements in the redox capability of the photocatalyst and the efficiency of e-h separation.
View Article and Find Full Text PDFis an obligate intracellular protozoan of severe threat to humans and livestock, whose life history harbors both gamic and apogamic stages. Chinese 1 (ToxoDB#9) was a preponderant genotype epidemic in food-derived animals and humans in China, with a different pathogenesis from the strains from the other nations of the world. Posttranslational modifications (PTMs) of proteins were critical mediators of the biology, developmental transforms, and pathogenesis of protozoan parasites.
View Article and Find Full Text PDFIn this study, the differences in the phosphoproteomic landscape of sporulated oocysts between virulent and avirulent strains of Toxoplasma gondii were examined using a global phosphoproteomics approach. Phosphopeptides from sporulated oocysts of the virulent PYS strain (Chinese ToxoDB#9) and the avirulent PRU strain (type II) were enriched by titanium dioxide (TiO) affinity chromatography and quantified using IBT approach. A total of 10,645 unique phosphopeptides, 8181 nonredundant phosphorylation sites and 2792 phosphoproteins were identified.
View Article and Find Full Text PDFSulfamethazine (SMZ) as a broad antibiotic is widely used in livestock and poultry. However, the abuse of SMZ in livestock feed can lead to SMZ residues in food and the resistance of bacteria to drugs. Thus, a method for the detection of SMZ in food is urgently needed.
View Article and Find Full Text PDFHerein, we propose a lateral flow immunoassay (LFIA) based on the dual spectral-overlapped fluorescence quenching of polydopamine nanospheres (PDANs) caused by the inner filter effect to sensitively detect sulfamethazine (SMZ). The fluorescence quenching LFIA device consists of four parts: absorbent pad, polyvinyl chloride pad, sample pad, and nitrocellulose membrane. Compared with traditional quenchers such as gold nanoparticles (AuNPs) with single spectral-overlapped quenching ability, PDANs can quench the excitation light and emission light of three fluorescence donors (aggregation-induced emission fluorescent microsphere, AIEFM; fluorescent microsphere, FM; and quantum dot bead, QB).
View Article and Find Full Text PDFIn this study, cerium-doped lanthanum ferrite perovskite oxides (LaCeFeO) with different A-site were synthesized using a sol-gel method and they were used as ozonation catalyst for p-nitrophenol (PNP) mineralization for the first time. Catalytic activity in terms of total organic carbon (TOC) removal followed the order of LaCeFeO > LaCeFeO > LaCeFeO > LaCeFeO > LaFeO with 77, 66, 61, 60 and 56% respectively. The synthesized catalysts were characterized by diffraction of X-ray (XRD), Raman spectroscopy, Brunauer-Emmett-Teller (BET) and scanning electronic microscopy (SEM).
View Article and Find Full Text PDFTaenia pisiformis is a parasite that causes cysticercosis pisiformis, which has acquired economic relevance because of its effects on animal welfare and production. A useful assay for the detection of T. pisiformis is needed for the prevention of cysticercosis pisiformis and control of the parasite.
View Article and Find Full Text PDFMetal-free catalysts are widely considered as promising alternatives to traditional metal-based catalysts, which can effectively activate peroxymonosulfate (PMS). In this study, a novel metal-free catalyst, carbonized polypyrrole (CPPy) was synthesized through high-temperature carbonization of PPy, easily achieving the in situ N doping without the addition of nitrogen sources. Tetracycline (TC) was selected as the target contaminant to assess the catalytic activity of the CPPy/PMS system.
View Article and Find Full Text PDFToxoplasma gondii is a protozoan parasite capable of infecting a large number of warm-blooded animals and causes serious health complications in immunocompromised patients. T. gondii infection of the feline small intestine is critical for the completion of the life cycle and transmission of T.
View Article and Find Full Text PDFThe wide application of lateral flow assay (LFA) was limited by its low sensitivity and poor matric tolerance. Aggregation induced emission (AIE) materials show superior luminescence and good stability under close packing state, which may accelerate the development of LFA. However, the detection performance of the AIE-based LFA in different real samples was unclear.
View Article and Find Full Text PDFBackground: Sulfamethazine (SMZ), a veterinary drug widely used in animal husbandry, is harmful to human health when excess residues are present in food. In this study, a fast, reliable, and sensitive immunochromatographic assay (ICA) was developed on the basis of the competitive format by using time-resolved fluorescent nanobeads (TRFN) as label for the detection of SMZ in egg, honey, and pork samples.
Results: Under optimized working conditions, this method had limits of detection of 0.
An efficient process was developed to selectively produce monocyclic aromatic hydrocarbons (MAHs) from ex-situ catalytic fast pyrolysis (CFP) of pine assisted with calcium formate (CF) over bimetal-modified HZSM-5. Mo and another metal (Mg, Ga or Zn) were used to modify the HZSM-5, and the as-synthesized bimetal-modified HZSM-5 catalysts were utilized for both pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and lab-scale CFP tests with CF as a hydrogen donor to selectively obtain MAHs. The results revealed that the presence of CF and Mg-Mo modified HZSM-5 (0.
View Article and Find Full Text PDFIn this study, a novel colorimetric and fluorescent dual-mode ELISA based on glucose oxidase (GOx)-triggered Fenton reaction was developed for the qualitative and quantitative detection of danofloxacin (DAN). In this system, streptavidin-linked biotinylated anti-DAN-monoclonal antibody (SA-Bio-mAb) and biotinylated GOx (Bio-GOx) form the immune complex mAb-Bio-SA-Bio-GOx. In the absence of DAN, the mAb-Bio-SA-Bio-GOx would be immobilized by combining with coated DAN-BSA and catalyzed glucose to generate HO.
View Article and Find Full Text PDFDistinct genotypic and pathogenic differences exist between genotypes. For example, genotype I is highly virulent, whereas genotype II and genotype III are less virulent. Moreover, Chinese 1 genotype (ToxoDB#9) is also virulent.
View Article and Find Full Text PDFTo gain insights into differences in the virulence among strains at the post-translational level, we conducted a quantitative analysis of the phosphoproteome profile of strains belonging to three different genotypes. Phosphopeptides from three strains, type I (RH strain), type II (PRU strain) and ToxoDB#9 (PYS strain), were enriched by titanium dioxide (TiO2) affinity chromatography and quantified using iTRAQ technology. A total of 1,441 phosphopeptides, 1,250 phosphorylation sites and 759 phosphoproteins were detected.
View Article and Find Full Text PDFWe characterized the porcine tissue transcriptional landscapes that follow infection. RNAs were isolated from liver, spleen, cerebral cortex, lung, and mesenteric lymph nodes (MLNs) of -infected and uninfected (control) pigs at days 6 and 18 postinfection, and were analyzed using next-generation sequencing (RNA-seq). altered the expression of 178, 476, 199, 201, and 362 transcripts at 6 dpi and 217, 223, 347, 119, and 161 at 18 dpi in the infected brain, liver, lung, MLNs and spleen, respectively.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2018
A kind of graphene functional materials based on three-dimensional (3D) porous structure is a new star for environmental application in the past decades because it not only inherits the perfect carbon crystal structure of two-dimensional (2D) graphene sheets but also exhibits several advantages such as extremely low density, high porosity, and big surface area, all which enable diverse contaminants to easily access and diffuse into 3D networks, and make these materials ideal adsorbents with superior adsorptivity and recyclability. This review aims to summarize the recent progress in constructing 3D graphene-based adsorbents (3DGBAs) with two hybrid systems such as graphene/polymers and graphene/inorganic nanomaterials, and to provide a fundamental understanding of synthetic methods for interconnecting these nanostructures, structure-property relationships, and extensive applications in environmental protection towards adsorption of heavy metals, dyes, oils, and organic pollutants. Furthermore, we make a forecast on the future development opportunities and technical challenges, which is hoped to make an inspiration for the researchers to exploit a new family of graphene-based adsorption materials.
View Article and Find Full Text PDFTetracycline (TC), an antibiotic, is persistent in nature and frequently detected in water and sediments. Visible-light-driven photocatalyst for TC degradation is a promising environmental-friendly technology. BiZrO, an effective photocatalyst, but no studies on its photodegradation of TC could be found in literature.
View Article and Find Full Text PDF