Publications by authors named "Zexi Lv"

Lung cancer is one of the most common malignant tumors, and non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancer cases. Chinese herbal formula Qing-Re-Huo-Xue (QRHXF) has shown antitumor effects in the NSCLC xenograft mouse model of Lewis cells. However, the molecular mechanisms underlying the antitumor effects of QRHXF remain unknown.

View Article and Find Full Text PDF

Airway remodeling is one of the typical pathological characteristics of asthma, while the structural changes of the airways in asthma are complex, which impedes the development of novel asthma targeted therapy. Our previous study had shown that Bu-Shen-Yi-Qi formula (BSYQF) could ameliorate airway remodeling in chronic asthmatic mice by modulating airway inflammation and oxidative stress in the lung. In this study, we analysed the lung transcriptome of control mice and asthmatic mouse model with/without BSYQF treatment.

View Article and Find Full Text PDF

Background/aims: The Wnt signaling pathway has essential functions in the central nervous system, where it regulates the major physiological functions of neurons, including development, differentiation, and plasticity. Wnt signaling controls these cellular events; however, how Wnt pathways integrate into a coherent developmental program remains unclear.

Methods: The expression and secretion of different WNT ligands (Wnt-1, Wnt-3a, Wnt-4, Wnt-5a, Wnt-11), and the levels and activities of cyclin-dependent kinases (CDK2, CDK4, CDK6/cyclin D, cyclin E) or CDK5 (CDK5/p35 and p25) were measured in Rat cortex at different embryonic stages, and in RA/BDNF-induced differentiated SH-SY5Y cell model, by Quantitative real-time PCR (qPCR), western blotting, ELISA, and in vitro CDK5 kinase assays.

View Article and Find Full Text PDF

The NAD-dependent protein deacetylase sirtuin 1 (SIRT1), a member of the sirtuin family, may have a neuroprotective effect in multiple neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). Many studies have suggested that overexpression-induced or resveratrol-treated activation of SIRT1 could significantly ameliorate several neurodegenerative diseases in mouse models. However, the type of SIRT1, protein expression levels and underlying mechanisms remain unclear, especially in PD.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is a common, severe and recurrent psychiatric disorder worldwide; however, the underlying neuropathological mechanisms remain elusive. Histone deacetylases (HDACs) appear to play an essential role in depression. As the class III HDACs, Sirt1 and Sirt2 have attracted the most interest in the nervous system.

View Article and Find Full Text PDF

α-Synuclein is an abundantly expressed neuronal protein that is at the center of focus in understanding a group of neurodegenerative disorders called synucleinopathies, which are characterized by the intracellular presence of aggregated α-synuclein. However, the mechanism of α-synuclein biology in synucleinopathies pathogenesis is not fully understood. In this study, mice overexpressing human A30P*A53T α-synuclein were evaluated by a motor behavior test and count of TH-positive neurons, and then two-dimensional liquid chromatography-tandem mass spectrometry coupled with tandem mass tags (TMTs) labeling was employed to quantitatively identify the differentially expressed proteins of substantia nigra pars compacta (SNpc) tissue samples that were obtained from the α-synuclein transgenic mice and wild type controls.

View Article and Find Full Text PDF

Parkinson's disease (PD) is an irreversible and progressive neurodegenerative disorder characterized by the selective loss of dopaminergic neurons of the substantia nigra pars compacta. Growing evidence indicates that endoplasmic reticulum stress is a hallmark of PD; however, its exact contribution to the disease process remains poorly understood. Here, we used molecular biology methods and RNA-Seq analysis to explored an unexpected role of spliced X-Box binding protein 1 (XBP1s) in the nervous system.

View Article and Find Full Text PDF

The molecular mechanisms responsible for the loss of dopaminergic neurons in Parkinson's disease (PD) remain obscure. Loss of function of E3 ubiquitin ligases is associated with mitochondria dysfunction, dysfunction of protein degradation, and α-synuclein aggregation, which are major contributors to neurodegeneration in PD. Recent research has thus focused on E3 ubiquitin ligase glycoprotein 78 (GP78); however, the role of GP78 in PD pathogenesis remains unclear.

View Article and Find Full Text PDF