Publications by authors named "Zewei Lian"

Rapid detection of various exosomes is of great significance in early diagnosis and postoperative monitoring of cancers. Here, a divisional optical biochip is reported for multiplex exosome analysis via combining the self-assembly of nanochains and precise surface patterning. Arising from resonance-induced near-field enhancement, the nanochains show distinct color changes after capturing target exosomes for direct visual detection.

View Article and Find Full Text PDF

Biomolecular markers, particularly circulating microRNAs (miRNAs) play an important role in diagnosis, monitoring, and therapeutic intervention of cancers. However, existing detection strategies remain intricate, laborious, and far from being developed for point-of-care testing. Here, we report a portable colorimetric sensor that utilizes the hetero-assembly of nanostructures driven by base pairing and recognition for direct detection of miRNAs.

View Article and Find Full Text PDF

Rapid and ultra-sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for early screening and management of COVID-19. Currently, the real-time reverse transcription polymerase chain reaction (rRT-PCR) is the primary laboratory method for diagnosing SARS-CoV-2. It is not suitable for at-home COVID-19 diagnostic test due to the long operating time, specific equipment, and professional procedures.

View Article and Find Full Text PDF

With the demand for point-of-care testing (POCT) in cardiovascular diseases, the detection of biomarkers in trace blood samples is of great significance in emergency medicine settings. Here, we demonstrated an all-printed photonic crystal microarray for POCT of protein markers (named "P4 microarray"). The paired nanobodies were printed as probes to target the soluble suppression of tumorigenicity 2 (sST2) as a certified cardiovascular protein marker.

View Article and Find Full Text PDF

Fast and accurate detection of microbial cells in clinical samples is highly valuable but remains a challenge. Here, a simple, culture-free diagnostic system is developed for direct detection of pathogenic bacteria in water, urine, and serum samples using an optical colorimetric biosensor. It consists of printed nanoarrays chemically conjugated with specific antibodies that exhibits distinct color changes after capturing target pathogens.

View Article and Find Full Text PDF

Highlight removal is a critical and challenging problem. In view of the complex highlight phenomenon on the surface of smooth liquor bottles in natural scenes, the traditional highlight removal algorithms cannot semantically disambiguate between all-white or near-white materials and highlights, and the recent highlight removal algorithms based on deep learning lack flexibility in network architecture, have network training difficulties and have insufficient object applicability. As a result, they cannot accurately locate and remove highlights in the face of some small sample highlight datasets with strong pertinence, which reduces the performance of some tasks.

View Article and Find Full Text PDF

Designing and preparing a fast and easy-to-use immunosensing biochip are of great significance for clinical diagnosis and biomedical research. In particular, sensitive, specific, and early detection of biomarkers in trace samples promotes the application of point-of-care testing (POCT). Here, we demonstrate an all-printed immunosensing biochip with the characteristics of hydrodynamic enrichment and photonic crystal-enhanced fluorescence.

View Article and Find Full Text PDF