Covalent modification of carbon nanotubes is a promising strategy for engineering their electronic structures. However, keeping modification sites in registration with a nanotube lattice is challenging. We report a solution using DNA-directed, guanine (G)-specific cross-linking chemistry.
View Article and Find Full Text PDFA sterically encumbered aminoborane sensor is introduced and used for quantitative stereochemical analysis of monoalcohols, diols and amino alcohols. The small-molecule probe exhibits a rigid ortho-substituted arene scaffold with a proximate boron binding site and a triarylamine circular dichroism (CD) reporter unit which proved to be crucial for the observed chiroptical signal induction. Coordination of the chiral target molecule produces strong Cotton effects and UV changes that are readily correlated to its absolute configuration, enantiomeric composition and concentration to achieve comprehensive stereochemical analysis within a 5 % absolute error margin.
View Article and Find Full Text PDFDNA-wrapped carbon nanotubes have been explored increasingly as sensitive near-infrared fluorescence probes for biomolecules. However, notably missing in previous studies is an inquiry on stereoselective interactions between DNA-wrapped carbon nanotubes and biomolecules. Here, enantiopure (+) and (-)(6,5), and (-)(8,3) as well as achiral (11,0) carbon nanotubes wrapped with specific resolving DNA sequences are used to demonstrate their stereoselective detection of amino acid enantiomers.
View Article and Find Full Text PDFThe efficiency and scope of two acyclic π-wall extended cucurbiturils, M2 and M3, exhibiting rapidly interconverting helical conformers for chiroptical sensing of amines, amino acids, alcohols, and terpenes at micromolar concentrations in water is evaluated. The formation of 1 : 1 host-guest complexes results in spontaneous induction of circular dichroism signals that can be used for accurate determination of the absolute configuration and enantiomeric composition of the analyte based on a simple mix-and-measure protocol.
View Article and Find Full Text PDFQuantitative chirality sensing of terpenes and terpenoids exhibiting a single double bond as the only functional group, such as α-pinene, β-pinene and camphene, or two alkene moieties like limonene, valencene, and β-caryophyllene is among the most difficult molecular recognition tasks. In this work, a fast chiroptical sensing method that accomplishes determination of the enantiomeric excess and overall amount of a large variety of terpenes and terpenoids using readily available phosphine derived late transition metal complexes is presented. The terpene coordination is complete within 10 min and coincides with spontaneous induction of strong CD signals at long wavelengths and distinct UV changes which together allow accurate and concentration quantification.
View Article and Find Full Text PDFWe have developed an optical method for accurate concentration, er, and dr analysis of amino alcohols based on a simple mix-and-measure workflow that is fully adaptable to multiwell plate technology and microscale analysis. The conversion of the four aminoindanol stereoisomers with salicylaldehyde to the corresponding Schiff base allows analysis of the dr based on a change in the UV maximum at 420 nm that is very different for the homo- and heterochiral diastereomers and of the concentration of the sample using a hypsochromic shift of another absorption band around 340 nm that is independent of the analyte stereochemistry. Subsequent in situ formation of Cu assemblies in the absence and presence of base enables quantification of the er values for each diastereomeric pair by CD analysis.
View Article and Find Full Text PDFIn a previous study, a novel anthraquinone analog BW-AQ-101 was identified as a potent inducer of MDM2 degradation, leading to upregulation of p53 and apoptosis in cell culture studies. In animal models of acute lymphocytic leukemia, treatment with BW-AQ-101 led to complete disease remission. In this study, we systematically investigated the effect of substitution patterns of the core anthraquinone scaffold.
View Article and Find Full Text PDFOptical chirality sensing of unprotected amino acids, hydroxy acids, amino alcohols, amines and carboxylic acids based on a practical mix-and-measure protocol with readily available copper, iron, palladium, manganese, cerium or rhodium salts is demonstrated. The generation of strong cotton effects allows quantitative ee analysis of small sample amounts with high speed. In contrast to previously reported assays the use of chromophoric reporter ligands and the control of metal coordination kinetics and redox chemistry are not necessary which greatly simplifies the sensing procedure with the benefit of reduced waste production and cost.
View Article and Find Full Text PDFDiastereodivergent and enantioselective conversion of isatin ketimines to α-fluoro-β-aminonitriles with vicinal tetrasubstituted stereocenters is achieved by a chiral copper complex/guanidine base catalyzed Mannich reaction with proper choice of the bisphosphine ligand. The reaction is broad in scope, scalable, and provides efficient access to a series of 3-aminoindolinones exhibiting a quaternary carbon-fluorine stereocenter with high yields and stereoselectivities. Selective transformations of the Mannich reaction products into multifunctional 3-aminooxindoles without erosion of enantiomeric and diastereomeric purity highlight the synthetic utility.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2019
Broadly useful chiroptical enantiomeric excess (ee) sensing remains challenging and typically involves carefully designed molecular receptors or supramolecular assemblies. Herein, we report on the enantioselective sensing of 35 amino acids, amino phosphonic acids, hydroxy acids, amino alcohols, and diamines with an auxiliary-free cobalt probe. Chiroptical analysis of the enantiomeric composition and concentration of minute sample amounts was achieved with high accuracy by using earth-abundant cobalt salts and hydrogen peroxide as the oxidant.
View Article and Find Full Text PDFThe determination of the enantiopurity and the concentration of chiral compounds by chiroptical sensing with molecular probes is increasingly attractive for high-throughput screening applications including streamlined asymmetric reaction development. In this study, we use stereodynamic aluminum biphenolate complexes for quantitative ee and concentration analysis of amino alcohols and α-hydroxy acids. An important feature of the tropos biphenolate ligand used is the presence of a phenylacetylene antenna for optimal chirality recognition and CD/UV responses at high wavelengths.
View Article and Find Full Text PDFThree Cu(I) complexes derived from stereodynamic diphosphine ligands were synthesized and used for chirality sensing. The coordination of diamines and amino acids to these complexes generates distinct circular dichroism signals. The chiroptical sensor response allows determination of the absolute configuration and the enantiomeric excess of the analyte at low concentrations.
View Article and Find Full Text PDFWhile progress has been made in treating cancer, cytotoxic chemotherapeutic agents are still the most widely used drugs and are associated with severe side-effects. Drugs that target unique molecular signalling pathways are needed for treating cancer with low or no intrinsic toxicity to normal cells. Our goal is to target hypoxic tumours and specifically the hypoxia inducible factor (HIF) pathway for the development of new cancer therapies.
View Article and Find Full Text PDFMany forms of solid tumor have a characteristic feature known as hypoxia, which describes a low or non-existent presence of oxygen in the cellular microenvironment. This decrease in oxygen causes activation of the hypoxia inducible factor (HIF) pathway, which activates the transcription of many genes that cause cell proliferation, metastasis, increased glycolysis and angiogenesis. Increased HIF expression has been linked with poor patient prognosis, increased malignancy, and therapeutic resistance.
View Article and Find Full Text PDFJ Am Chem Soc
October 2016
Self-assembly of a stereodynamic phosphine ligand, Pd(II), and a chiral amine, amino alcohol, or amino acid generates characteristic UV and CD signals that can be used for quantitative stereochemical analysis of the bound substrate. A robust mix-and-measure chiroptical sensing protocol has been developed and used to determine the absolute configuration, ee, and yield of an amine produced by Ir-catalyzed asymmetric hydrogenation of an iminium salt. The analysis requires only 1 mg of the crude reaction mixture and minimizes cost, labor, time, and waste.
View Article and Find Full Text PDFA stereodynamic chemosensor that can be used for simultaneous determination of the absolute configuration, enantiomeric composition and total concentration of chiral amines and amino alcohols based on two fast optical measurements was prepared and tested. The free sensor is CD-silent and produces characteristic blue-shifted UV and CD signals upon substrate binding via Schiff base formation. The potential in high-throughput screening applications and for rational sensor developments are discussed.
View Article and Find Full Text PDFTwo bidentate ligands consisting of a fluxional polyarylacetylene framework with terminal phenol groups were synthesized. Reaction with diethylzinc gives stereodynamic complexes that undergo distinct asymmetric transformation of the first kind upon binding of chiral amines and amino alcohols. The substrate-to-ligand chirality imprinting at the zinc coordination sphere results in characteristic circular dichroism signals that can be used for direct enantiomeric excess (ee) analysis.
View Article and Find Full Text PDF