Publications by authors named "Zeugolis D"

Despite the promising potential of cell-based therapies developed using tissue engineering techniques to treat a wide range of diseases, including limbal stem cell deficiency (LSCD), which leads to corneal blindness, their commercialization remains constrained. This is primarily attributable to the limited cell sources, the use of non-standardizable, unscalable, and unsustainable techniques, and the extended manufacturing processes required to produce transplantable tissue-like surrogates. Herein, we present the first demonstration of the potential of a novel approach combining collagen films (CF), hyaluronic acid (HA), human telomerase-immortalized limbal epithelial stem cells (T-LESCs), and macromolecular crowding (MMC) to develop innovative biomimetic substrates for limbal epithelial stem cells (LESCs).

View Article and Find Full Text PDF

The major obstacle in the commercialisation and clinical translation of tissue engineered medicines is the required for the development of implantable tissue surrogates prolonged in vitro culture. Macromolecular crowding (MMC) enhances and accelerates extracellular matrix (ECM) deposition, thus offering an opportunity to bridge the gap between research and development in tissue engineered substitutes. However, the optimal MMC agent is still elusive.

View Article and Find Full Text PDF

Allogeneic serum and tissue-specific extracellular matrix have been shown to maintain permanently differentiated cell phenotype in culture. This is of particular importance for human tenocytes, a cell population that readily loses its function during ex vivo culture. With these in mind, herein we extracted human tenocytes using either foetal bovine serum or human serum, cultured them in the absence and presence of carrageenan and Ficoll®, the most widely used macromolecular crowding agents (to induce tissue-specific extracellular matrix deposition), and assessed cellular function, via metabolic activity, viability, proliferation and immunofluorescence for collagen related molecules, non-collagenous molecules and transmembrane molecules.

View Article and Find Full Text PDF

Even though tissue-engineered medicines are under intense academic, clinical, and commercial investigation, only a handful of products have been commercialised, primarily due to the costs associated with their prolonged manufacturing. While macromolecular crowding has been shown to enhance and accelerate extracellular matrix deposition in eukaryotic cell culture, possibly offering a solution in this procrastinating tissue-engineered medicine development, there is still no widely accepted macromolecular crowding agent. With these in mind, we herein assessed the potential of gum Arabic, gum gellan, gum karaya, and gum xanthan as macromolecular crowding agents in WS1 skin fibroblast cultures (no macromolecular crowding and carrageenan were used as a control).

View Article and Find Full Text PDF

Fibrotic diseases are characterised by myofibroblast differentiation, uncontrolled pathological extracellular matrix accumulation, tissue contraction, scar formation and, ultimately tissue / organ dysfunction. The cornea, the transparent tissue located on the anterior chamber of the eye, is extremely susceptible to fibrotic diseases, which cause loss of corneal transparency and are often associated with blindness. Although topical corticosteroids and antimetabolites are extensively used in the management of corneal fibrosis, they are associated with glaucoma, cataract formation, corneoscleral melting and infection, imposing the need of far more effective therapies.

View Article and Find Full Text PDF

Although human tenocytes and dermal fibroblasts have shown promise in tendon engineering, no tissue engineered medicine has been developed due to the prolonged time required to develop an implantable device. Considering that macromolecular crowding has the potential to substantially accelerate the development of functional tissue facsimiles, herein we compared human tenocyte and dermal fibroblast behaviour under standard and macromolecular crowding conditions to inform future studies in tendon engineering. Basic cell function analysis made apparent the innocuousness of macromolecular crowding for both cell types.

View Article and Find Full Text PDF

The fibrocartilaginous enthesis is a highly specialised tissue interface that ensures a smooth mechanical transfer between tendon or ligament and bone through a fibrocartilage area. This tissue is prone to injury and often does not heal, even after surgical intervention. Enthesis augmentation approaches are challenging due to the complexity of the tissue that is characterised by the coexistence of a range of cellular and extracellular components, architectural features and mechanical properties within only hundreds of micrometres.

View Article and Find Full Text PDF

Cutaneous wound healing is a natural and complex repair process that is implicated within four stages. However, microorganisms (e.g.

View Article and Find Full Text PDF

Herbal extracts have been used in traditional remedies since the earliest myths. They have excellent antimicrobial, anti-inflammatory, and antioxidant activities owing to various bioactive components in their structure. However, due to their inability to reach a target and low biostability, their use with a delivery vehicle has come into prominence.

View Article and Find Full Text PDF

Due to their inherent plasticity, dermal fibroblasts hold great promise in regenerative medicine. Although biological signals have been well-established as potent regulators of dermal fibroblast function, it is still unclear whether physiochemical cues can induce dermal fibroblast trans-differentiation. Herein, we evaluated the combined effect of surface topography, substrate rigidity, collagen type I coating and macromolecular crowding in human dermal fibroblast cultures.

View Article and Find Full Text PDF

Macromolecular crowding (MMC) enhances and accelerates extracellular matrix (ECM) deposition in eukaryotic cell culture. Single hyaluronic acid (HA) molecules have not induced a notable increase in the amount and rate of deposited ECM. Thus, herein we assessed the physicochemical properties and biological consequences in equine bone marrow mesenchymal stromal cell cultures of single and mixed HA molecules and correlated them to the most widely used MMC agents, the Ficoll cocktail (FC) and carrageenan (CR).

View Article and Find Full Text PDF

Cell sheet tissue engineering requires prolonged in vitro culture for the development of implantable devices. Unfortunately, lengthy in vitro culture is associated with cell phenotype loss and substantially higher cost of goods, which collectively hinder clinical translation and commercialisation of tissue engineered medicines. Although macromolecular crowding has been shown to enhance and accelerate extracellular matrix deposition, whilst maintaining cellular phenotype, the optimal macromolecular crowding agent still remains elusive.

View Article and Find Full Text PDF

Biomaterial-based therapies have been receiving attention for treating microbial infections mainly to overcome the increasing number of drug-resistant bacterial strains and off-target impacts of therapeutic agents by conventional strategies. A fibrous, non-soluble protein, collagen, is one of the most studied biopolymers for the development of antimicrobial biomaterials owing to its superior physicochemical, biomechanical, and biological properties. In this study, we reviewed the different approaches used to develop collagen-based antimicrobial devices, such as non-pharmacological, antibiotic, metal oxide, antimicrobial peptide, herbal extract-based, and combination approaches, with a particular focus on preclinical studies that have been published in the last decade.

View Article and Find Full Text PDF

Enthesis repair remains a challenging clinical indication. Herein, a three-layer scaffold composed of a tendon-like layer of collagen type I, a fibrocartilage-like layer of collagen type II and a bone-like layer of collagen type I and hydroxyapatite, was designed to recapitulate the matrix composition of the enthesis. To aid tenogenic and fibrochondrogenic differentiation, bioactive molecules were loaded in the tendon-like layer or the fibrocartilage-like layer and their effect was assessed in setting using human bone marrow derived mesenchymal stromal cells and in an model.

View Article and Find Full Text PDF

Cell culture media containing undefined animal-derived components and prolonged culture periods in the absence of native extracellular matrix result in phenotypic drift of human bone marrow stromal cells (hBMSCs). Herein, we assessed whether animal component-free (ACF) or xeno-free (XF) media formulations maintain hBMSC phenotypic characteristics more effectively than foetal bovine serum (FBS)-based media. In addition, we assessed whether tissue-specific extracellular matrix, induced macromolecular crowding (MMC) during expansion and/or differentiation, can more tightly control hBMSC fate.

View Article and Find Full Text PDF

The increase in antimicrobial resistance and tolerance over the years has become a serious public health problem, leading to the inevitable development of alternative antimicrobial agents as substitutes for industrial pharmaceutical antibiotics targeting humans and animals under the concept of one health. Essential oils (EOs) extracted from aromatic and pharmaceutical plants incorporate several bioactive compounds (phytochemicals) that positively affect human and animal health. Herein, this work aimed to examine a standardized chemical composition and screen the antimicrobial and anti-biofilm activity of , , , and EOs against three different strains by gold-standard disc diffusion, broth microdilution, and microtiter plate biofilm assays.

View Article and Find Full Text PDF

Modern bioengineering utilises biomimetic cell culture approaches to control cell fate during in vitro expansion. In this spirit, herein we assessed the influence of bidirectional surface topography, substrate rigidity, collagen type I coating and macromolecular crowding (MMC) in human bone marrow stem cell cultures. In the absence of MMC, surface topography was a strong modulator of cell morphology.

View Article and Find Full Text PDF

The combined effect of surface topography and substrate rigidity in stem cell cultures is still under-investigated, especially when biodegradable polymers are used. Herein, we assessed human bone marrow stem cell response on aliphatic polyester substrates as a function of anisotropic grooved topography and rigidity (7 and 12 kPa). Planar tissue culture plastic (TCP, 3 GPa) and aliphatic polyester substrates were used as controls.

View Article and Find Full Text PDF

Foot ulceration is a major complication of diabetes mellitus, which results in significant human suffering and a major burden on healthcare systems. The cause of impaired wound healing in diabetic patients is multifactorial with contributions from hyperglycaemia, impaired vascularization and neuropathy. Patients with non-healing diabetic ulcers may require amputation, creating an urgent need for new reparative treatments.

View Article and Find Full Text PDF

Scaffold-free in vitro organogenesis exploits the innate ability of cells to synthesise and deposit their own extracellular matrix to fabricate tissue-like assemblies. Unfortunately, cell-assembled tissue engineered concepts require prolonged ex vivo culture periods of very high cell numbers for the development of a borderline three-dimensional implantable device, which are associated with phenotypic drift and high manufacturing costs, thus, hindering their clinical translation and commercialisation. Herein, we report the accelerated (10 days) development of a truly three-dimensional (338.

View Article and Find Full Text PDF

Although cell-derived matrices are at the forefront of scientific research and technological innovation for the development of in vitro tumour models, their two-dimensional structure and low extracellular matrix composition restrict their capacity to accurately predict toxicity of candidate molecules. Herein, we assessed the potential of macromolecular crowding (a biophysical phenomenon that significantly enhances and accelerates extracellular matrix deposition, resulting in three-dimensional tissue surrogates) in improving cell-derived matrices in vitro tumour models. Among the various decellularisation protocols assessed (NHOH, DOC, SDS/EDTA, NP40), the NP40 appeared to be the most effective in removing cellular matter and the least destructive to the deposited matrix.

View Article and Find Full Text PDF

The absence of a native extracellular matrix and the use of xenogeneic sera are often associated with rapid tenocyte function losses during in vitro culture. Herein, we assessed the influence of different sera (equine serum and foetal bovine serum) on equine tenocyte morphology, viability, metabolic activity, proliferation and protein synthesis as a function of tissue-specific extracellular matrix deposition (induced via macromolecular crowding), aging (passages 3, 6, 9) and time in culture (days 3, 5, 7). In comparison to cells at passage 3, at day 3, in foetal bovine serum and without macromolecular crowding (traditional equine tenocyte culture), the highest number of significantly decreased readouts were observed for cells in foetal bovine serum, at passage 3, at day 5 and day 7 and without macromolecular crowding.

View Article and Find Full Text PDF

Single molecule drug delivery systems have failed to yield functional therapeutic outcomes, triggering investigations into multi-molecular drug delivery vehicles. In the context of skin fibrosis, although multi-drug systems have been assessed, no system has assessed molecular combinations that directly and specifically reduce cell proliferation, collagen synthesis and transforming growth factor1 (TGF1) expression. Herein, a core-shell collagen type I hydrogel system was developed for the dual delivery of a TGFtrap, a soluble recombinant protein that inhibits TGFsignalling, and Trichostatin A (TSA), a small molecule inhibitor of histone deacetylases.

View Article and Find Full Text PDF

Collagen type II is the major constituent of cartilage tissue. Yet, cartilage engineering approaches are primarily based on collagen type I devices that are associated with suboptimal functional therapeutic outcomes. Herein, we briefly describe cartilage's development and cellular and extracellular composition and organisation.

View Article and Find Full Text PDF

Skin fibrosis still constitutes an unmet clinical need. Although pharmacological strategies are at the forefront of scientific and technological research and innovation, their clinical translation is hindered by the poor predictive capacity of the currently available fibrosis models. Indeed, customarily utilised scarring models are conducted in a low extracellular matrix milieu, which constitutes an oxymoron for the in-hand pathophysiology.

View Article and Find Full Text PDF