Publications by authors named "Zetan Cao"

Spiral inorganic perovskite nanowires (NWs) possess unique morphologies and properties that allow them highly attractive for applications in optoelectronic and catalytic fields. In popular solution-based synthesis methodology, however, challenges persist in simultaneously achieving precise and facile control over morphological twisting and fantastic carrier lifetimes. Here, a cooperative strategy of concurrently employing selective etching and ligand engineering is applied to facilitate the formation of spiral CsPbBr perovskite NWs with an ultralong carrier lifetime of ≈2 µs.

View Article and Find Full Text PDF

Advances in hollow engineering of metal-organic frameworks (MOFs) have enabled a variety of applications in catalysts, sensors, and batteries, but the hollow derivatives are often limited to hydroxides, oxides, selenides, and sulfides with the presence of additional elements from the environment. Here we have successfully synthesized hollow metallic Co@Co cages through a facile two-step strategy. Interestingly, the Co@Co(C) cages with a small amount of residual carbon show excellent catalytic performance due to the abundant exposed active sites and fast charge transfer.

View Article and Find Full Text PDF

Enantiomeric control of intrinsically chiral inorganic nanocrystals (NCs), despite being reported in few systems over the past years, still remains a challenging task. Here, we succeeded in the enantioselective synthesis of intrinsically chiral perovskite-like CsCuCl NCs in the presence of chiral amino acids using an antisolvent crystallization method at room temperature. The d-/l-ligand-induced enantiomeric NCs showed the relevant characteristic chiroptical responses.

View Article and Find Full Text PDF

Chirality involved reactions enable to probe features in the fields of asymmetric synthesis and catalysis, which allow to gain insight into the fundamental mechanisms of topochemically controlled reactions. However, observation of the chirality-associated reaction dynamics with simultaneous structural determination of microscopic features has been lacking. Here, we report the direct visualization of the electron-beam-stimulated reaction dynamics of HgS nanostructures with chiral and achiral morphologies simultaneously in both real and reciprocal space.

View Article and Find Full Text PDF

Through its ability to image liquid-phase dynamics at nano/atomic-scale resolution, liquid-cell electron microscopy is essential for a wide range of applications, including wet-chemical synthesis, catalysis, and nanoparticle tracking, for which involved structural features are critical. However, statistical investigations by usual techniques remain challenging because of the difficulty in fabricating substantial liquid cells with appreciable efficiency. Here, we report a general approach for efficiently printing huge numbers of ready-to-use liquid cells (∼9000) within 30 s by electrospinning, with the unique feature of statistical liquid-phase studies requiring only one experimental time slot.

View Article and Find Full Text PDF

Redox reaction, involving the gain and loss of electrons between reactants, is one type of common chemical reaction governing fundamental energy issues in nature. However, reports of vividly visualizing such key processes with simultaneous structural determination of new phases that are involved are rare. Here, by achieving simultaneous recording in both real and reciprocal space, we demonstrate in situ imaging of the redox reaction dynamics in perovskite nanocrystals.

View Article and Find Full Text PDF

The chemical state of a transition-metal dopant in TiO(2) can intrinsically determine the performance of the doped material in applications such as photocatalysis and photovoltaics. In this study, manganese-doped TiO2 is fabricated by a near-equilibrium process, in which the TiO(2) precursor powder precipitates from a hydrothermally obtained transparent mother solution. The doping level and subsequent thermal treatment influence the morphology and crystallization of the TiO(2) samples.

View Article and Find Full Text PDF