Background: There is lack of discrimination as to traditional imaging diagnostic methods of cystic renal lesions (CRLs). This study aimed to evaluate the value of machine learning models based on clinical data and contrast-enhanced computed tomography (CECT) radiomics features in the differential diagnosis of benign and malignant CRL.
Methods: There were 192 patients with CRL (Bosniak class ≥ II) enrolled through histopathological examination, including 144 benign cystic renal lesions (BCRLs) and 48 malignant cystic renal lesions (MCRLs).