As the temperature decreases, rigid anisotropic molecules that usually incorporate polar groups, aromatic rings or multiple bonds, orient along a common direction, eventually forming liquid-crystalline phases under specific thermodynamic conditions. This study explores the phase behavior and dynamics of board-shaped mesogens with a 1,4,5,8-tetraphenyl-anthraquinone core and four lateral arms forming an oligo(phenyleneethynylene) scaffold. These molecules are promising candidates for forming the elusive biaxial nematic phase.
View Article and Find Full Text PDFWe investigate the effect of pressure on the carbon dioxide (CO2) hydrate-water interfacial free energy along its dissociation line using advanced computer simulation techniques. In previous works, we have determined the interfacial energy of the hydrate at 400 bars using the TIP4P/Ice and TraPPE molecular models for water and CO2, respectively, in combination with two different extensions of the Mold Integration technique [J. Colloid Interface Sci.
View Article and Find Full Text PDFIn this paper, the solubility of carbon dioxide (CO2) in water along the isobar of 400 bar is determined by computer simulations using the well-known TIP4P/Ice force field for water and the TraPPE model for CO2. In particular, the solubility of CO2 in water when in contact with the CO2 liquid phase and the solubility of CO2 in water when in contact with the hydrate have been determined. The solubility of CO2 in a liquid-liquid system decreases as the temperature increases.
View Article and Find Full Text PDFIn this work, we shall estimate via computer simulations the homogeneous nucleation rate for the methane hydrate at 400 bars for a supercooling of about 35 K. The TIP4P/ICE model and a Lennard-Jones center were used for water and methane, respectively. To estimate the nucleation rate, the seeding technique was employed.
View Article and Find Full Text PDFIn this paper, the solubility of methane in water along the 400 bar isobar is determined by computer simulations using the TIP4P/Ice force field for water and a simple LJ model for methane. In particular, the solubility of methane in water when in contact with the gas phase and the solubility of methane in water when in contact with the hydrate has been determined. The solubility of methane in a gas-liquid system decreases as temperature increases.
View Article and Find Full Text PDFThe growth pattern and nucleation rate of carbon dioxide hydrate critically depend on the precise value of the hydrate-water interfacial free energy. There exist in the literature only two independent experimental measurements of this thermodynamic magnitude: one obtained by Uchida et al. [J.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2022
Hypothesis: Carbon dioxide hydrates are ice-like nonstoichiometric inclusion solid compounds with importance to global climate change, and gas transportation and storage. The thermodynamic and kinetic mechanisms that control carbon dioxide nucleation critically depend on hydrate-water interfacial free energy. Only two independent indirect experiments are available in the literature.
View Article and Find Full Text PDFMany important processes affecting the earth's climate are determined by the physical properties of seawater. In addition, desalination of seawater is a significant source of drinking water for the human population living in coastal areas. Since the physical properties of seawater governing these processes depend on the molecular interactions among its components, a deeper knowledge of seawater at the molecular level would contribute to a better understanding of these phenomena.
View Article and Find Full Text PDFIn this work, a force field for several ions in water is proposed. In particular, we consider the cations Li, Na, K, Mg, and Ca and the anions Cl and SO . These ions were selected as they appear in the composition of seawater, and they are also found in biological systems.
View Article and Find Full Text PDF