The resonant excitation of electronic transitions with coherent laser sources creates quantum coherent superpositions of the involved electronic states. Most time-resolved studies have focused on gases or isolated subsystems embedded in insulating solids, aiming for applications in quantum information. Here, we focus on the coherent control of orbital wavefunctions in the correlated quantum material TbTiO, which forms an interacting spin liquid ground state.
View Article and Find Full Text PDFUltrafast photoinduced phase transitions at room temperature, driven by a single laser shot and persisting long after stimuli, represent emerging routes for ultrafast control over materials' properties. Time-resolved studies provide fundamental mechanistic insight into far-from-equilibrium electronic and structural dynamics. Here we study the photoinduced phase transformation of the RbMnCo[Fe(CN)] material, designed to exhibit a 75 K wide thermal hysteresis around room temperature between MnFe tetragonal and MnFe cubic phases.
View Article and Find Full Text PDF[Ce(III)Cl], with its earth-abundant metal element, is a promising photocatalyst facilitating carbon-halogen bond activation. Still, the structure of the reaction intermediate has yet to be explored. Here, we applied time-resolved X-ray liquidography (TRXL), which allows for direct observation of the structural details of reaction intermediates, to investigate the photocatalytic reaction of [Ce(III)Cl].
View Article and Find Full Text PDFIn this paper we study the out-of-equilibrium dynamics associated with photoinduced charge-transfer (CT) in cyanide-bridged Co-Fe Prussian blue analogue nanocrystals. In these coordination networks, the structural trapping of the photoinduced CT polaron involves local electronic and structural reorganizations. Femtosecond X-ray and optical absorption spectroscopies show that the local structural trapping process occurs on similar timescale for particles with 11 nm and 70 nm sizes.
View Article and Find Full Text PDFThe structural changes of water upon deep supercooling were studied through wide-angle x-ray scattering at SwissFEL. The experimental setup had a momentum transfer range of 4.5 Å, which covered the principal doublet of the x-ray structure factor of water.
View Article and Find Full Text PDFPhotosystem I (PS I) has a symmetric structure with two highly similar branches of pigments at the center that are involved in electron transfer, but shows very different efficiency along the two branches. We have determined the structure of cyanobacterial PS I at room temperature (RT) using femtosecond X-ray pulses from an X-ray free electron laser (XFEL) that shows a clear expansion of the entire protein complex in the direction of the membrane plane, when compared to previous cryogenic structures. This trend was observed by complementary datasets taken at multiple XFEL beamlines.
View Article and Find Full Text PDFModern techniques for the investigation of correlated materials in the time domain combine selective excitation in the THz frequency range with selective probing of coupled structural, electronic and magnetic degrees of freedom using x-ray scattering techniques. Cryogenic sample temperatures are commonly required to prevent thermal occupation of the low energy modes and to access relevant material ground states. Here, we present a chamber optimized for high-field THz excitation and (resonant) x-ray diffraction at sample temperatures between 5 and 500 K.
View Article and Find Full Text PDFOne of the main challenges in ultrafast material science is to trigger phase transitions with short pulses of light. Here we show how strain waves, launched by electronic and structural precursor phenomena, determine a coherent macroscopic transformation pathway for the semiconducting-to-metal transition in bistable TiO nanocrystals. Employing femtosecond powder X-ray diffraction, we measure the lattice deformation in the phase transition as a function of time.
View Article and Find Full Text PDFKnowledge of the temperature dependence of the isobaric specific heat (C) upon deep supercooling can give insights regarding the anomalous properties of water. If a maximum in C exists at a specific temperature, as in the isothermal compressibility, it would further validate the liquid-liquid critical point model that can explain the anomalous increase in thermodynamic response functions. The challenge is that the relevant temperature range falls in the region where ice crystallization becomes rapid, which has previously excluded experiments.
View Article and Find Full Text PDFPhotoswitchable 11 nm nanocrystals with the coordination network Cs{Co[Fe(CN)]} were obtained using a template-free method. The nanocrystals were recovered from the colloidal solutions as solid materials surrounded by cetyltrimethylammonium (CTA) cations or embedded in the organic polymer polyvinylpyrrolidone (PVP). Complementary magnetic, spectroscopic, and structural techniques, including EPR spectroscopy, reveal a majority (∼70%) of the low-spin and photoactive diamagnetic CoFe pairs located in the core of the nanocrystals and a mixture of CoFe and CoFe species present mainly within the shell of the objects.
View Article and Find Full Text PDFMany of the scientific applications for X-ray free-electron lasers seek to exploit the ultrashort pulse durations of intense X-rays to obtain femtosecond time resolution of various processes in a "pump-probe" scheme. One of the limiting factors for such experiments is the timing jitter between the X-rays and ultrashort pulses from more conventional lasers operating at near-optical wavelengths. In this work, we investigate the potential of using X-ray-induced changes in the optical second harmonic generation efficiency of a nonlinear crystal to retrieve single-shot arrival times of X-ray pulses with respect to optical laser pulses.
View Article and Find Full Text PDFWe use femtosecond optical pump-probe spectroscopy to study the Light Induced Excited Spin State Trapping (LIESST) dynamics in an Fe spin-crossover material. In these systems, LIESST derives from fast molecular switching induced by light from low (LS, S = 0) to high spin (HS, S = 2) states, as reported for molecules in solution as well as in the solid state. Since the direct LS-to-HS conversion is forbidden by selection rules, the switching dynamics involves intermediate electronic states such as metal-to-ligand charge transfer (MLCT) or ligand-field excited states of singlet or triplet nature.
View Article and Find Full Text PDFThe Bernina instrument at the SwissFEL Aramis hard X-ray free-electron laser is designed for studying ultrafast phenomena in condensed matter and material science. Ultrashort pulses from an optical laser system covering a large wavelength range can be used to generate specific non-equilibrium states, whose subsequent temporal evolution can be probed by selective X-ray scattering techniques in the range 2-12 keV. For that purpose, the X-ray beamline is equipped with optical elements which tailor the X-ray beam size and energy, as well as with pulse-to-pulse diagnostics that monitor the X-ray pulse intensity, position, as well as its spectral and temporal properties.
View Article and Find Full Text PDFThe extension of transient grating spectroscopy to the x-ray regime will create numerous opportunities, ranging from the study of thermal transport in the ballistic regime to charge, spin, and energy transfer processes with atomic spatial and femtosecond temporal resolution. Studies involving complicated split-and-delay lines have not yet been successful in achieving this goal. Here we propose a novel, simple method based on the Talbot effect for converging beams, which can easily be implemented at current x-ray free electron lasers.
View Article and Find Full Text PDFThe [Fe(L N )(CN) ] compound, where L N refers to the macrocyclic Schiff-base ligand, 2,13-dimethyl-3,6,9,-12,18-pentaazabicyclo[12.3.1]octadeca-1(18),2,12,14,- 16-pentaene, is a photomagnetic Fe based coordination compound, which undergoes light-induced excited spin-state trapping (LIESST).
View Article and Find Full Text PDFLight-induced excited spin state trapping (LIESST) in Fe spin-crossover systems is a process that involves the switching of molecules from low (LS, = 0) to high spin (HS, = 2) states. The direct LS-to-HS conversion is forbidden by selection rules, and LIESST involves intermediate states such as MLCT or T. The intersystem crossing sequence results in an HS state, structurally trapped by metal-ligand bond elongation through the coherent activation and damping of molecular breathing.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
August 2017
The complex relaxation from the photoinduced high-spin phase (PIHS) to the low-spin phase of the bimetallic two-dimensional coordination spin-crossover polymer [Fe[(Hg(SCN))](4,4'-bipy)] is reported. During the thermal relaxation, commensurate and incommensurate spin-state concentration waves (SSCWs) form. However, contrary to the steps forming at thermal equilibrium, associated with long-range SSCW order, the SSCWs forming during the relaxation from the PIHS phase correspond to short-range order, revealed by diffuse X-ray scattering.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
June 2015
Aperiodic composite crystals present long-range order without translational symmetry. These materials may be described as the intersection in three dimensions of a crystal which is periodic in a higher-dimensional space. In such materials, symmetry breaking must be described as structural changes within these crystallographic superspaces.
View Article and Find Full Text PDF