Heterocyclic amines (HCAs) are a group of mutagenic compounds produced during thermal processing of protein-rich foods. One of the most abundant HCAs, 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) has potential carcinogenic and mutagenic effects on human organs, especially the colon. This study aimed to explore the toxic effects of PhIP on amino acid metabolism in the colon of Wistar rats using RNA-seq and LC-MS/MS.
View Article and Find Full Text PDFCreatinine, commonly found in muscle tissue, has been demonstrated as an essential precursor of 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP) in thermally possessed foods. In this current study, formamide and N-methylformamide were identified as the main thermal degradation products of creatinine. The raised production of PhIP and the decreased level of aldol condensation product occurred simultaneously with the increased addition of formamide in the model system of creatinine and phenylacetaldehyde.
View Article and Find Full Text PDFAcrylamide and 5-hydroxymethyl-2-furfural (5-HMF) are two of the most abundant compounds generated during thermal processing. A simple method for the simultaneous quantitation of acrylamide and 5-HMF was developed and successfully applied in thermally processed foods. Acrylamide and 5-HMF were co-extracted with methanol and then purified and enriched by an Oasis HLB solid-phase extraction cartridge, simultaneously analyzed by high-performance liquid chromatography and detected with a diode array detector, respectively, at their optimal wavelength.
View Article and Find Full Text PDFUnlabelled: Creatinine was found to not only act as a precursor of 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) formation but also inhibit PhIP formation in a creatinine/phenylalanine model system. The dual mechanistic effects of creatinine on PhIP formation were then investigated in a model system. Adducts of creatinine-PhIP were detected by quadrupole-time-of-flight mass spectrometry and were found to be a likely explanation for the substantial decrease in the yield of PhIP when excess creatinine was supplied.
View Article and Find Full Text PDFBackground: Heterocyclic aromatic amines (HAAs) have been considered as carcinogenic and mutagenic chemicals generated during thermal processing of protein-rich foods that can be inhibited by some flavonoids. Free radical scavenging is a major characteristic of flavonoids.
Results: The half-maximal inhibitory concentration (IC ) values of nine flavonoids were determined by evaluating their capacity to inhibit 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx) formation in a model system.
The inhibitory effect of 10 flavonoids on the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in a creatinine-phenylalanine model system was investigated through electronic spin resonance and a quantitative structure-activity relationship. Alkoxy radicals were observed during the heating process, providing evidence for a radical pathway in the formation of PhIP. The alkoxy radical scavenging capability of the flavonoids was proportional to their inhibition of PhIP formation (IC50 ).
View Article and Find Full Text PDFThe inhibitory effects of antioxidants of bamboo leaves (AOB) and flavonoids against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) formation were investigated in creatinine and phenylalanine model systems. AOB and the tested flavonoids (orientin, homoorientin, vitexin, isovitex, apigenin, luteolin, isorhamnetin, fisetin, and hesperetin) had significant dose-dependent inhibition effects on PhIP formation with different IC50 values. The superoxide anion (O2(•-)) scavenging activities of these nine flavonoids were evaluated using the pyrogallol autoxidation system.
View Article and Find Full Text PDF