Tuneable, variable, optical attenuation through an optical circulator with a broad, linear attenuation range of Δ ∼ (30-40) dB is demonstrated using non-reciprocal Faraday rotation in a double-pass configuration with a combination of permanent magnets and an electromagnet. A fiber-coupled magneto-optical variable optical attenuator (MVOA) operates over the near IR with an attenuation tuning range of Δ > 30 dB, a resolution of Δ ∼ 0.02 dB, a response time of < 2 ms, and a temperature dependence over = 25-70°C of Δ / Δ = -8 × 10 dB/°C.
View Article and Find Full Text PDFCompact, magnetic field, sensing is proposed and demonstrated by combining the two Faraday rotation elements and beam displacement crystals within a micro-optical fiber circulator with a fiber reflector and ferromagnets to allow high contrast attenuation in an optical fiber arm. Low optical noise sensing is measured at =1550 as a change in attenuation, , of optical light propagating through the rotators and back. The circulator's double-pass configuration, using a gold mirror as a reflector, achieves a magnetic field sensitivity = / =(0.
View Article and Find Full Text PDFThe paper presents a comprehensive overview of intelligent video analytics and human action recognition methods. The article provides an overview of the current state of knowledge in the field of human activity recognition, including various techniques such as pose-based, tracking-based, spatio-temporal, and deep learning-based approaches, including visual transformers. We also discuss the challenges and limitations of these techniques and the potential of modern edge AI architectures to enable real-time human action recognition in resource-constrained environments.
View Article and Find Full Text PDFThe utilisation of plants directly as quantifiable natural sensors is proposed. A case study measuring surface wettability of Aucuba japonica, or Japanese Laurel, plants using a novel smartphone field interrogator is demonstrated. This plant has been naturalised globally from Asia.
View Article and Find Full Text PDFMany health professionals do not use correct person transfer techniques in their daily practice. This results in damage to the paraspinal musculature over time, resulting in lower back pain and injuries. In this work, we propose an approach for the accurate multimodal measurement of people lifting and related motion patterns for ergonomic education regarding the application of correct patient transfer techniques.
View Article and Find Full Text PDF