Osteoblasts are the functional cells capable of bone formation in the bone microenvironment and play an important role in bone growth, development, and the maintenance of bone mass. The cells cultured in vitro are derived from preosteoblasts in tissues and possess the ability to divide and proliferate. Osteoblasts form the bone matrix by secreting collagen and other matrix proteins, which provides a foundation for the deposition of minerals such as calcium and phosphorus, ultimately resulting in the formation of hard bone tissue.
View Article and Find Full Text PDFIn this work, a functional covalent gel material is developed to resolve the severe dendritic growth and hydrogen evolution reaction toward Zn/electrolyte interface in aqueous zinc-ion batteries (ZIBs). A covalent gel layer with superior durability forms homogeneously on the surface of Zn foil. The covalent gel with triazole functional groups can uniformize the transport of Zn due to the interactions between Zn ions and the triazole groups in the covalent gel.
View Article and Find Full Text PDFAqueous zinc metal batteries (ZMBs) are a promising sustainable technology for large-scale energy storage applications. However, the water is often associated with problematic parasitic reactions on both anode and cathode, leading to the low durability and reliability of ZMBs. Here, a multifunctional separator for the Zn-V O batteries by growing the coordination supramolecular network (CSN:Zn-MBA, MBA = 2-mercaptobenzoic acid) on the conventional non-woven fabrics (NWF) is developed.
View Article and Find Full Text PDFHigh room-temperature ionic conductivity and good compatibility with lithium metal and cathode materials are prerequisites for solid-state electrolytes used in lithium metal batteries. Here, the solid-state polymer electrolytes (SSPE) are prepared by combining the traditional two-roll milling technology with interface wetting. The as-prepared electrolytes consisting of elastomer matrix and high-mole-loading of LiTFSI salt show a high room temperature ionic conductivity of 4.
View Article and Find Full Text PDFIodine has great potential in the energy storage, but high solubility of I has seriously delayed its promotion. Benefited from abundant active sites and the open channel, two-dimensional coordination supramolecular networks (2D CSNs) is considered to be a candidate for the energy storage. Herein, a 2D porphyrin-CSN cathode named Zn-TCPP for aqueous iodine dual-ion battery (DIB) shows an excellent specific capacity of 278 mAh g , and a high energy density of 340 Wh kg at 5 A g , as well as a durable cycle performance of 5000 cycles and a high Coulombic efficiency of 98 %.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2022
A scalable manufacturing protocol is developed to prepare polymer-based solvent-free all-solid flexible energy storage devices based on a two-roll mill and adapted rubber mixing technology. The as-prepared solid polymer electrolytes (SPEs) consisting of commercial poly(methyl methacrylate)-grafted natural rubber (MG) and lithium bis(trifluoromethanesulfonyl)imide achieve a superior ionic conductivity of 2.7 × 10 S cm at 30 °C.
View Article and Find Full Text PDFCommercialization of aqueous zinc-metal batteries remains unrealistic due to the substantial dendrite growth and side reaction issues on the zinc anodes. It is highly demanded to develop easy-to-handle approaches for constructing stable, dense, as well as homogeneous solid anode/electrolyte interfaces. Herein, the authors construct the zinc anode interface with a close-packed Zn-TSA (TSA = thiosalicylate) coordination supramolecular network through the facile and up-scalable wet-chemical method.
View Article and Find Full Text PDFAqueous Zn-ion batteries (ZIBs) are considered very promising alternatives to lithium-ion batteries. However, the low reversibility and slow diffusion of zinc ions in the positive electrode limit their commercial applications. Herein, we successfully prepared the metallic 1T phase of MoS (1T-MoS) with a nano interlayer spacing of 1.
View Article and Find Full Text PDFDue to the high theoretical specific capacity of lithium-sulfur batteries, it is considered the most promising electrochemical energy storage device for the next generation. However, the development of lithium-sulfur battery has been restricted by its low cycle efficiency and low capacity. We present a Plane double-layer structure of AC@S cathode to improve the electrochemical performance of lithium-sulfur batteries.
View Article and Find Full Text PDFTo inhibit the polysulfide-diffusion in lithium sulfur (Li-S) batteries and improve the electrochemical properties, the commercial polypropylene (PP) was decorated by an active carbon (AC) coating with lots of electronegative oxygenic functional group of -OH. Owing to the strong adsorption of AC and the electrostatic repulsion between the -OH and negatively charged polysulfide ions, the Li-S batteries demonstrated a high initial discharge capacity of 1,656 mAh g (approximately 99% utilization of sulfur) and the capacity can still remain at 830 mAh g after 100 cycles at 0.2 C.
View Article and Find Full Text PDF