Phase shifter (PS) is a key component of a phased array antenna (PAA) system, which controls the microwave phase and realizes the antenna beam forming and scanning. A ferrite PS (FPS) is a current-controlled PS that uses the ferrite's gyromagnetic properties to realize phase shifting. It has the advantages of short phase switching time, low microwave loss, and high reliability and, therefore, has been widely used in low-power PAA systems.
View Article and Find Full Text PDFQuantum liquid, in the form of a self-bound droplet, is stabilized by a subtle balance between the mean-field contribution and quantum fluctuations. While a liquid-gas transition is expected when such a balance is broken, it remains elusive whether liquid-gas critical points exist in the quantum regime. Here, we study the quantum criticality in a binary Bose mixture undergoing the liquid-gas transition.
View Article and Find Full Text PDFFor pseudospin-half bosons with interspin attraction and intraspin repulsion, the normal phase and Bose condensed phase can coexist at finite temperature. The homogeneous system is unstable against the spinodal decomposition within a medium density interval, and, consequently, a normal-superfluid phase separation takes place. The isothermal equation of state shows a characteristic plateau in the P-V (pressure-volume) diagram, which is reminiscent of a classical gas-liquid transition, although, unlike the latter, the coexistence lines never terminate at a critical point as temperature increases.
View Article and Find Full Text PDFIn this Letter, we report the first experimental realization and investigation of a spin-orbit coupled Fermi gas. Both spin dephasing in spin dynamics and momentum distribution asymmetry of the equilibrium state are observed as hallmarks of spin-orbit coupling in a Fermi gas. The single particle dispersion is mapped out by using momentum-resolved radio-frequency spectroscopy.
View Article and Find Full Text PDFIn this Letter we study both ground state properties and the superfluid transition temperature of a spin-1/2 Fermi gas across a Feshbach resonance with a synthetic spin-orbit coupling, using the mean-field theory and the exact solution of two-body problem. We show that a strong spin-orbit coupling can significantly enhance the pairing gap for negative scattering length a(s), due to increased density of state at Fermi surface. Strong spin-orbit coupling can also significantly enhance the superfluid transition temperature Tc to a sizable fraction of Fermi temperature when a(s) ≤ 0, while it suppresses Tc slightly for positive a(s).
View Article and Find Full Text PDF