Publications by authors named "Zengqi Yue"

Differential phase contrast (DPC) imaging relies on computational analysis to extract quantitative phase information from phase gradient images. However, even modest noise level can introduce errors that propagate through the computational process, degrading the quality of the final phase result and further reducing phase sensitivity. Here, we introduce the noise-corrected DPC (ncDPC) to enhance phase sensitivity.

View Article and Find Full Text PDF

With the ChemCam instrument, laser-induced breakdown spectroscopy (LIBS) has successively contributed to Mars exploration by determining the elemental compositions of soils, crusts, and rocks. The American Perseverance rover and the Chinese Zhurong rover respectively landed on Mars on February 18 and May 15, 2021, further increase the number of LIBS instruments on Mars. Such an unprecedented situation requires a reinforced research effort on the methods of LIBS spectral data analysis.

View Article and Find Full Text PDF

The mortality of ovarian cancer is closely related to its poor rate of early detection. In the search of an efficient diagnosis method, Raman spectroscopy of blood features as a promising technique allowing simple, rapid, minimally-invasive and cost-effective detection of cancers, in particular ovarian cancer. Although Raman spectroscopy has been demonstrated to be effective to detect ovarian cancers with respect to normal controls, a binary classification remains idealized with respect to the real clinical practice.

View Article and Find Full Text PDF

Early-stage screening and diagnosis of ovarian cancer represent an urgent need in medicine. Usual ultrasound imaging and cancer antigen CA-125 test when prescribed to a suspicious population still require reconfirmations. Spectroscopic analyses of blood, at the molecular and atomic levels, provide useful supplementary tests when coupled with effective information extraction methods.

View Article and Find Full Text PDF

As any spectrochemical analysis method, laser-induced breakdown spectroscopy (LIBS) usually relates characteristic spectral lines of the elements or molecules to be analyzed to their concentrations in a material. It is however not always possible for a given application scenario, to rely on such lines because of various practical limitations as well as physical perturbations in the spectrum excitation and recording process. This is actually the case for determination of carbon in steel with LIBS operated in the ambient gas, where the intense C I 193.

View Article and Find Full Text PDF

This work demonstrates the efficiency of machine learning in the correction of spectral intensity variations in laser-induced breakdown spectroscopy (LIBS) due to changes of the laser pulse energy, such changes can occur over a wide range, from 7.9 to 71.1 mJ in our experiment.

View Article and Find Full Text PDF

Determination of trace elements in soils with laser-induced breakdown spectroscopy is significantly affected by the matrix effect, due to large variations in chemical composition and physical property of different soils. Spectroscopic data treatment with univariate models often leads to poor analytical performances. We have developed in this work a multivariate model using machine learning algorithms based on a back-propagation neural network (BPNN).

View Article and Find Full Text PDF