For the treatment of bacterial infections, photodynamic antimicrobial chemotherapy (PACT) has the advantage of circumventing multi-drug resistance. In this work, new cationic photosensitizers against multi-drug resistant (MRPM) were designed and synthesized by the conjugation of amino phenyl porphyrin with basic amino acid L-ornithine. Their photoinactivation efficacies against MRPM were reported and include the influence of laser energy, uptake, MIC and MBC, dose-dependent photoinactivation effects, membrane integrity, and fluorescence imaging.
View Article and Find Full Text PDFThis study examined the antibacterial effect of protoporphyrin IX-ethylenediamine derivative (PPIX-ED)-mediated photodynamic antimicrobial chemotherapy (PPIX-ED-PACT) against Pseudomonas aeruginosa in vitro and in vivo. PPIX-ED potently inhibited the growth of Pseudomonas aeruginosa by inducing reactive oxygen species production via photoactivation. Atomic force microscopy revealed that PPIX-ED-PACT induced the leakage of bacterial content by degrading the bacterial membrane and wall.
View Article and Find Full Text PDFA series of novel tacrine-phenolic acid dihybrids and tacrine-phenolic acid-ligustrazine trihybrids were synthesized, characterized and screened as novel potential anti-Alzheimer drug candidates. These compounds showed potent inhibition activity towards cholinesterases (ChEs), among of them, 9i was the most potent one towards acetylcholinesterase (eeAChE, IC = 3.9 nM; hAChE, IC = 65.
View Article and Find Full Text PDFLysine-porphyrin conjugate 4i has potent photosensitive antibacterial effect on clinical isolated bacterial strains such as Methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. The mechanism of photodynamic antibacterial chemotherapy of 4i (4i-PACT) in vitro and the treatment effect in vivo was investigated in this paper. Atomic force microscopy (AFM) revealed that 4i-PACT can effectively destroy membrane and wall of bacteria, resulting in leakage of its content.
View Article and Find Full Text PDFPhotodynamic antimicrobial chemotherapy (PACT), as a novel and effective modality for the treatment of infection with the advantage of circumventing multidrug resistance, receives great attention in recent years. The photosensitizer is the crucial element in PACT, and cationic porphyrins have been demonstrated to usually be more efficient than neutral and negatively charged analogues towards bacteria in PACT. In this work, three native basic amino acids, l-lysine, l-histidine and l-arginine, were conjugated with amino porphyrins as cationic auxiliary groups, and 13 target compounds were synthesized.
View Article and Find Full Text PDF