ACS Appl Mater Interfaces
April 2024
Achieving low-resistance Ohmic contacts with a vanishing Schottky barrier is crucial for enhancing the performance of two-dimensional (2D) field-effect transistors (FETs). In this paper, we present a theoretical investigation of VS/WSe-vdWHs-FETs with a gate length () in the range of 1-5 nm, using quantum transport simulations. The results show that a very low hole Schottky barrier height (-0.
View Article and Find Full Text PDFTwo-dimensional (2D) van der Waals (vdW) multiferroic tunnel junctions (MFTJs) composed of a ferromagnetic metal and a ferroelectric barrier have controllable thickness and clean interface and can realize the coexistence of tunneling magnetoresistance (TMR) and tunneling electroresistance (TER). Therefore, they have enormous potential application in nonvolatile multistate memories. Here, using first principles combined with non-equilibrium Green's function method, we have systematically investigated the spin-dependent transport properties of FeGeTe/MnSe/FeGeTe vdW MFTJs with various numbers of barrier layers.
View Article and Find Full Text PDFDue to the ability to reduce the gate length of field-effect transistors (FETs) down to sub-10 nm without obviously affecting the performance of the device, the utilization of two-dimensional (2D) semiconductor materials as channel materials for FETs is of great interest. However, in-plane 2D/2D heterojunction FETs have received less attention in previous studies than vertical van der Waals heterojunction devices. Based on the above reasons, this study has investigated the transport properties of an in-plane NbSe/MoSe/NbSe heterojunction FET with different gate lengths by using quantum transport simulation.
View Article and Find Full Text PDFThe control of spin transport is a fundamental but crucial task in spintronics and realization of high spin polarization transport and pure spin currents is particularly desired. By combining the non-equilibrium Green's function with first principles calculations, it is shown that halogen adsorption can transform a black phosphorene monolayer from a nonmagnetic semiconductor to a magnetic semiconductor with two almost symmetric spin-split states near the Fermi level, which provides two isolated transport channels. Further investigations demonstrate that a device based on halogen-decorated phosphorene can behave multifunctionally, where a pure spin photocurrent and a fully spin-polarized photocurrent can be effectively controlled by tuning the photon energy or polarization angle of the incident light.
View Article and Find Full Text PDF